158 resultados para CONVERGENT SEQUENCES

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The phylogenetic relationships among worldwide species of genus Ochotona were investigated by sequencing mitochondrial cytochrome b and ND4 genes. Parsimony and neighbor-joining analyses of the sequence data yielded congruent results that strongly indicated three major clusters: the shrub-steppe group, the northern group, and the mountain group. The subgeneric classification of Ochotona species needs to be revised because each of the two subgenera in the present classification contains species from the mountain group. To solve this taxonomic problem so that each taxon is monophyletic, i.e., represents a natural clade, Ochotona could be divided into three subgenera, one for the shrub-steppe species, a second for the northern species, and a third for the mountain species. The inferred tree suggests that the differentiation of this genus in the Palearctic Region was closely related to the gradual uplifting of the Tibet (Qinghai-Xizang) Plateau, as hypothesized previously, and that vicariance might have played a major role in the differentiation of this genus on the Plateau, On the other hand, the North American species, O. princeps, is most likely a dispersal event, which might have happened during the Pliocene through the opening of the Bering Strait. The phylogenetic relationships within the shrub-steppe group are worth noting in that instead of a monophyletic shrub-dwelling group, shrub dwellers and steppe dwellers are intermingled with each other. Moreover, the sequence divergence within the sister tars of one steppe? dweller and one shrub dweller is very low. These findings support the hypothesis that pikes have entered the steppe environment several times and that morphological similarities within steppe dwellers were due to convergent evolution. (C) 2000 Academic Press.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rhodopsin, encoded by the gene Rhodopsin (RH1), is extremely sensitive to light, and is responsible for dim-light vision. Bats are nocturnal mammals that inhabit poor light environments. Megabats (Old-World fruit bats) generally have well-developed eyes, while microbats (insectivorous bats) have developed echolocation and in general their eyes were degraded, however, dramatic differences in the eyes, and their reliance on vision, exist in this group. In this study, we examined the rod opsin gene (RH1), and compared its evolution to that of two cone opsin genes (SWS1 and M/LWS). While phylogenetic reconstruction with the cone opsin genes SWS1 and M/LWS generated a species tree in accord with expectations, the RH1 gene tree united Pteropodidae (Old-World fruit bats) and Yangochiroptera, with very high bootstrap values, suggesting the possibility of convergent evolution. The hypothesis of convergent evolution was further supported when nonsynonymous sites or amino acid sequences were used to construct phylogenies. Reconstructed RH1 sequences at internal nodes of the bat species phylogeny showed that: (1) Old-World fruit bats share an amino acid change (S270G) with the tomb bat; (2) Miniopterus share two amino acid changes (V104I, M183L) with Rhinolophoidea; (3) the amino acid replacement I123V occurred independently on four branches, and the replacements L99M, L266V and I286V occurred each on two branches. The multiple parallel amino acid replacements that occurred in the evolution of bat RH1 suggest the possibility of multiple convergences of their ecological specialization (i.e., various photic environments) during adaptation for the nocturnal lifestyle, and suggest that further attention is needed on the study of the ecology and behavior of bats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on its characteristic oral apparatus, the ciliate subclass Peritrichia has long been recognized as a monophyletic assemblage composed of the orders Mobilida and Sessilida. Following the application of molecular methods, the monophyly of Peritrichia has recently been questioned. We investigated the phylogenetic relationships of the peritrichous ciliates based on four further complete small subunit ribosomal RNA sequences of mobilids, namely Urceolaria urechi, Trichodina meretricis, Trichodina sinonovaculae, and Trichodina ruditapicis. In all phylogenetic trees, the mobilids never clustered with the sessilids, but instead formed a monophyletic assemblage related to the peniculines. By contrast, the sessilids formed a sister clade with the hymenostomes at a terminal position within the Oligohymenophorea. We therefore formally separate the mobilids from the sessilids (Peritrichia sensu stricto) and establish a new subclass, Mobilia Kahl, 1933, which contains the order Mobilida Kahl, 1933. We argue that the oral apparatus in the mobilians and sessilid peritrichs is a homoplasy, probably due to convergent evolution driven by their similar life-styles and feeding strategies. Morphologically, the mobilians are distinguished from all other oligohymenophoreans by the presence of the adhesive disc, this character being a synapomorphy for the Mobilia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and Aims Rheum, a highly diversified genus with about 60 species, is mainly confined to the mountainous and desert regions of the Qinghai-Tibetan plateau and adjacent areas. This genus represents a good example of the extensive diversification of the temperate genera in the Qinghai-Tibetan plateau, in which the forces to drive diversification remain unknown. To date, the infrageneric classification of Rheum has been mainly based on morphological characters. However, it may have been subject to convergent evolution under habitat pressure, and the systematic position of some sections are unclear, especially Sect. Globulosa, which has globular inflorescences, and Sect. Nobilia, which has semi-translucent bracts. Recent palynological research has found substantial contradictions between exine patterns and the current classification of Rheum. Two specific objectives of this research were (1) to evaluate possible relationships of some ambiguous sections with a unique morphology, and (2) to examine possible occurrence of the radiative speciation with low genetic divergence across the total genus and the correlation between the extensive diversification time of Rheum and past geographical events, especially the recent large-scale uplifts of the Qinghai-Tibetan Plateau.Methods The chloroplast DNA trnL-F region of 29 individuals representing 26 species of Rheum, belonging to seven out of eight sections, was sequenced and compared. The phylogenetic relationships were further constructed based on the sequences obtained.Key Results Despite the highly diversified morphology, the genetic variation in this DNA fragment is relatively low. The molecular phylogeny is highly inconsistent with gross morphology, pollen exine patterns and traditional classifications, except for identifying all samples of Sect. Palmata, three species of Sect. Spiciformia and a few species of Sect. Rheum as corresponding monophyletic groups. The monotypic Sect. Globulosa showed a tentative position within the clade comprising five species of Sect. Rheum. All of the analyses revealed the paraphyly of R. nobile and R. alexandrae, the only two species of Sect. Nobilia circumscribed by the possession of large bracts. The crude calibration of lineages based on trnL-F sequence differentiation implied an extensive diversification of Rheum within approx. 7 million years.Conclusions Based on these results, it is suggested that the rich geological and ecological diversity caused by the recent large-scale uplifts of the Qinghai-Tibetan Plateau since the late Tertiary, coupled with the oscillating climate of the Quaternary stage, might have promoted rapid speciation in small and isolated populations, as well as allowing the fixation of unique or rare morphological characters in Rheum. Such a rapid radiation, combined with introgressive hybridization and reticulate evolution, may have caused the transfer of cpDNA haplotypes between morphologically dissimilar species, and might account for the inconsistency between morphological classification and molecular phylogeny reported here.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The genus Saussurea is distributed mainly in the temperate and subarctic regions of Eurasia and consists of about 300 species classified into six subgenera and 20 sections. Sect. Pseudoeriocoryne in the subgenus Eriocoryne comprises four species, and is delimited mainly by acaulescence and an inflorescence with congested capitula surrounded by a rosette of leaves. All of these species are endemic to the and Qinghai-Tibet Plateau. Sequences from the chloroplast DNA trnL-F region were obtained for the four species in this section and 26 other species from four subgenera of Saussurea to resolve phylogenetic relationships among these species and to determine whether the shared characters that define sect. Pseudoeriocoryne are synapomorphic or were acquired by convergent evolution. The resulting phylogenies indicated that Saussurea sect. Pseudoeriocoryne as traditionally defined does not constitute a monophyletic group and that each of its species belongs to separate clades. Furthermore, none of these species showed a close relationship with the other species of subgenus Eriocoryne. Our results further indicated that none of the investigated subgenera are monophyletic, and that species from different subgenera clustered together. All these conclusions are provisional and their confirmation would require stronger phylogenetic support. Two possible explanations are suggested for low sequence divergence, poor resolution of internal clades and clustering of species with the rather distinct morphology of Saussurea detected in the present study. The first is rapid radiation and diversification triggered by fast habitat fragmentation due to the recent lifting of the Qinghai-Tibet Plateau and the Quaternary climate oscillations. This could have led to rapid morphological divergence while sequences diverged very little, and also caused the convergent acquisition of similar characteristics in unrelated lineages due to similar selection pressures. The second possible explanation is that both introgressive hybridization and reticulate evolution might have caused the transferring of cpDNA sequences between morphologically dissimilar species, thus leading to homogenization of sequences between lineages. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The phylogenetic relationships among worldwide species of genus Ochotona were investigated by sequencing mitochondrial cytochrome b and ND4 genes. Parsimony and neighbor-joining analyses of the sequence data yielded congruent results that strongly indicated three major clusters: the shrub-steppe group, the northern group, and the mountain group. The subgeneric classification of Ochotona species needs to be revised because each of the two subgenera in the present classification contains species from the mountain group. To solve this taxonomic problem so that each taxon is monophyletic, i.e., represents a natural clade, Ochotona could be divided into three subgenera, one for the shrub-steppe species, a second for the northern species, and a third for the mountain species. The inferred tree suggests that the differentiation of this genus in the Palearctic Region was closely related to the gradual uplifting of the Tibet (Qinghai-Xizang) Plateau, as hypothesized previously, and that vicariance might have played a major role in the differentiation of this genus on the Plateau, On the other hand, the North American species, O. princeps, is most likely a dispersal event, which might have happened during the Pliocene through the opening of the Bering Strait. The phylogenetic relationships within the shrub-steppe group are worth noting in that instead of a monophyletic shrub-dwelling group, shrub dwellers and steppe dwellers are intermingled with each other. Moreover, the sequence divergence within the sister tars of one steppe? dweller and one shrub dweller is very low. These findings support the hypothesis that pikes have entered the steppe environment several times and that morphological similarities within steppe dwellers were due to convergent evolution. (C) 2000 Academic Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A metric representation of DNA sequences is borrowed from symbolic dynamics. In view of this method, the pattern seen in the chaos game representation of DNA sequences is explained as the suppression of certain nucleotide strings in the DNA sequences. Frequencies of short nucleotide strings and suppression of the shortest ones in the DNA sequences can be determined by using the metric representation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recurrence plot technique of DNA sequences is established on metric representation and employed to analyze correlation structure of nucleotide strings. It is found that, in the transference of nucleotide strings, a human DNA fragment has a major correlation distance, but a yeast chromosome's correlation distance has a constant increasing. (C) 2004 Elsevier B.V All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As a basic tool of modern biology, sequence alignment can provide us useful information in fold, function, and active site of protein. For many cases, the increased quality of sequence alignment means a better performance. The motivation of present work is to increase ability of the existing scoring scheme/algorithm by considering residue–residue correlations better. Based on a coarse-grained approach, the hydrophobic force between each pair of residues is written out from protein sequence. It results in the construction of an intramolecular hydrophobic force network that describes the whole residue–residue interactions of each protein molecule, and characterizes protein's biological properties in the hydrophobic aspect. A former work has suggested that such network can characterize the top weighted feature regarding hydrophobicity. Moreover, for each homologous protein of a family, the corresponding network shares some common and representative family characters that eventually govern the conservation of biological properties during protein evolution. In present work, we score such family representative characters of a protein by the deviation of its intramolecular hydrophobic force network from that of background. Such score can assist the existing scoring schemes/algorithms, and boost up the ability of multiple sequences alignment, e.g. achieving a prominent increase (50%) in searching the structurally alike residue segments at a low identity level. As the theoretical basis is different, the present scheme can assist most existing algorithms, and improve their efficiency remarkably.