91 resultados para COMPLEX METHOD
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Many efforts have been devoted to exploring novel luminescent materials that do not contain expensive or toxic elements, or do not need mercury vapor plasma as the excitation source. In this paper, amorphous Al2O3 powder samples were prepared via the Pechini-type sol-gel process. The resulting samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FESEM), photoluminescence (PL) excitation and emission spectra, kinetic decay, and electron paramagnetic resonance (EPR).
Resumo:
This feature article highlights work from the authors' laboratories on the various kinds of oxide optical materials, mainly luminescence and pigment materials with different forms (powder, core-shell structures, thin film and patterning) prepared by the Pechini-type sol-gel (PSG) process. The PSG process, which uses the common metal salts (nitrates, acetates, chlorides, etc.) as precursors and citric acid (CA) as chelating ligands of metal ions and polyhydroxy alcohol (such as ethylene glycol or poly ethylene glycol) as a cross-linking agent to form a polymeric resin on molecular level, reduces segregation of particular metal ions and ensures compositional homogeneity. This process can overcome most of the difficulties and disadvantages that frequently occur in the alkoxides based sol-gel process.
Resumo:
Nanocrystalline ZrO2 fine powders were prepared via the Pechini-type sol-gel process followed by annealing from 500 to 1000 degrees C. The obtained ZrO2 samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), electron paramagnetic resonance (EPR), and photoluminescence spectra (PL), respectively. The phase transition process from tetragonal (T) to monoclinic (M) was observed for the nanocrystalline ZrO2 powders in the annealing process, accompanied by the change of their photoluminescence properties. The 500 degrees C annealed ZrO2, powder with tetragonal structure shows an intense whitish blue emission (lambda(max) = 425 nm) with a wide range of excitation (230-400 nm). This emission decreased in intensity after being annealed at 600 degrees C (T + M-ZrO2) and disappeared at 700 (T + M-ZrO2), 800 (T + M-ZrO2), and 900 degrees C (M-ZrO2). After further annealing at 1000 degrees C (M-ZrO2), a strong blue-green emission appeared again (lambda(max) = 470 nm).
Resumo:
Luminescence functionalization of the ordered mesoporous SBA-15 silica was realized by depositing a YVO4:Eu3+ phosphor layer on its surface via the Pechini sol-gel process, resulting in the formation of the YVO4:Eu3+@SBA-15 composite material. This material, which combines the mesoporous structure of SBA-15 and the strong red luminescence property of YVO4:Eu3+, can be used as a novel functional drug delivery system. The structure, morphology, porosity, and optical properties of the materials were well characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, N-2 adsorption, and photoluminescence spectra. As expected, the pore volume, surface area, and pore size of SBA-15 decrease in sequence after deposition of the YVO4:Eu3+ layer and the adsorption of ibuprofen (IBU, drug). The IBU-loaded YVO4:Eu3+@SBA-15 system still shows the red emission of Eu3+ (617 nm, D-5(0)-F-7(2)) under UV irradiation and the controlled drug release property. Additionally, the emission intensity of Eu3+ increases with an increase in the cumulative released amount of IBU in the system, making the extent of drug release easily identifiable, trackable, and monitorable by the change of luminescence. The system has great potential in the drug delivery and disease therapy fields.
Resumo:
Systems design involves the determination of interdependent variables. Thus the precedence ordering for the tasks of determining these variables involves circuits. Circuits require planning decisions abut how to iterate and where to use estimates. Conventional planning techniques, such as critical path, do not deal with these problems. Techniques are shown in this paper which acknowledge these circuits in the design of systems. These techniques can be used to develop an effective engineering plan, showing where estimates are to be used, how design iterations and reviews are handled, and how information flows during the design work.
Resumo:
The relation between the lattice energies and the bulk moduli on binary inorganic crystals was studied, and the concept of lattice energy density is introduced. We find that the lattice energy densities are in good linear relation with the bulk moduli in the same type of crystals, the slopes of fitting lines for various types of crystals are related to the valence and coordination number of cations of crystals, and the empirical expression of calculated slope is obtained. From crystal structure, the calculated results are in very good agreement with the experimental values. At the same time, by means of the dielectric theory of the chemical bond and the calculating method of the lattice energy of complex crystals, the estimative method of the bulk modulus of complex crystals was established reasonably, and the calculated results are in very good agreement with the experimental values.
Resumo:
The transparent luminescent thin films of doped terbium complex were obtained by sol-gel method. The result indicates that rare earth carboxylates with poor solubility can be homogeneously doped into sol matrix in situ. The fluorescence spectra show that the thin film material emits the characteristic narrow band emission of Tb3+ under the UV excitation.
Resumo:
Terbium complexes with benzoic acid and its derivatives o-hydroxybenzoic acid and p-hydroxybenzoic acid were in situ synthesized in sol-gel derived silica matrix via a two-step sol-gel process. The formation process of the complex was characterized by fluorescence spectra, absorption spectra and IR spectra. The gels that contain in situ synthesized complexes exhibit the characteristic emission bands of terbium ion. The fluorescence lifetimes of Tb3+ in the silica gels are longer than those in the pure complexes and in the solutions that contain the corresponding complexes. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Ternary europium complexes with thenoyltrifluoroacetone (TTA) and phenanthroline (phen) were incorporated into SiO2/polymer matrix by a sol-gel method. The gels exhibit the characteristic emission bands of europium ion. In addition, Eu3+ presents a longer fluorescence lifetime in gel than in the corresponding pure complex powder. Concentration effects on the luminescence intensity were investigated. The reasons that are responsible for above results are also discussed in the context.
Resumo:
We report a semiempirical method for the evaluation of bond covalency in complex crystals. This method is the extension of the dielectric description theory delivered by Phillips, Van Vechten, Levine, and Tanaka (PVLT) which is mainly suitable for binary crystals. Our method offers the advantage of applicability to a broad class of complex materials. The simplicity of the approach allows a broader class of researchers to access the method easily and to calculate not only the bond covalency but also other useful. properties such as bulk modulus. For a series study, a useful trend can be illustrated and often the prediction of the properties of the-missing one(s) among the series can be possible. Finally, examples are given to show how the method is applied and the procedure is transferable to other complex crystals.
Resumo:
A new structure analysis method for lanthanide complexes was proposed, that is, none paramagnetic shift tri-lanthanide mixture method, It was found that the paramagnetic induced shift could be cancelled by mixing three kinds of paramagnetic lanthanide ions in appropriate proportion. As a result, the chelating sites would he seen simplely from the half widths and the relative distances between lanthanide ion and the ligand nucleus could be calculated from the relaxation time (T-1) or the half width. Care should be addressed that the analysis method is suitable for the systems in which intramolecular arrangements and intermolecular ligand exchanges are relatively fasten NMR time scale used.
Resumo:
In this paper, based on the consideration of covalent behavior of adjacent ions in crystals, a calculation formula of lattice energy was proposed. In which, the concept of ionic effective valence and the empirical formula covalent energy were introduced,
Resumo:
The main chlorophyll a/b light-harvesting complex (LHC 11) has been isolated directly from thylakoid membranes of marine green alga (Bryopsis corticulans Setch.) by two consecutive runs of anion exchange and gel-filtration chromatography. LHC 11 proteins in the membrane extracts treated with 3% n-Octyl-b-D-glucopyranoside (OG) obtained specific binding ability on Q Sepharose column, and thus were isolated from the thylakoid membranes in a highly selective fraction. The monomeric, trimeric and oligomeric subcomplexes of LHC 11 have been obtained by fractionation of the LHC 11 mixes with sucrose density gradient ultracentrifugation. The SDS-PAGE analysis of peptide composition and absorption spectrum showed that LHC 11 monomers, trimers and oligomers prepared through this work were intact and in high purity. Our report is the first to show that it is possible to purify LHC If directly from thylakoid membranes without extensively biochemical purification.