64 resultados para CHEMICAL-MODIFICATION

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a facile strategy to tether lanthanide complexes to organic-inorganic hybrid titania materials via sol-gel processing by employing chemically modified titanium alkoxide as the precursor where the organic ligand sensitizing the luminescence of lanthanide ions is bonded to titanium.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel microstructured polymer optical fiber (MPOF) probe for nitrites (NO(2)(-)) detection was made by forming rhodamine 6G (Rh 6G)-doped cellulose acetate (CA) on the side wall of array holes in a MPOF It was found that the MPOF probe only have a response to nitrites in a certain concentration of sulfuric acid solution The calibration graph of fluorescence intensity versus nitrites concentration was linear in the range of 2.0 x 10(-4) g/ml-5.0 x 10(-3) g/ml. The method possesses case of chemical modification, low cost design, and potential for direct integration with existing instrumentation, and has been applied to the determination of nitrites in real samples with satisfactory results. (C) 2010 Elsevier B.V. All rights reserved

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dodecenly succinic anhydride (DDSA) starches were prepared commercially by the base catalyzed reaction of DDSA in pre-emulsion with starch granular in aqueous slurry. The results indicated that the degree of substitution and reaction efficiency were 0.0256% and 42.7%, respectively, at the parameters for the preparation of DDSA starches in starch slurry 30%, DDSA/starch radio 10% (wt/wt), pH 8.5-9.0, reaction temperature 313 K. After modification, product surface chemical composite had been changed which was prone to migrate into less polar solution. The chemical structural characteristics were investigated by methods of FTIR and H-1 NMR. The results of X-ray diffraction showed the native A-type crystalline pattern, indicating that reaction of corn starch with DDSA caused no change in the crystalline structure. Compared to native starch, the hydrophobic performance of esters was greatly increased. With the DS increasing, contact angles were gradually increased, however, the adhesion works were decreased. The maximum contact angle of DDSA starch could attend to 123 degrees, and the corresponding adhesion work was 33.2 mJ m(-2).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The characteristics of intermediates of bacteriorhodopsin (bR) can be verified by chemical modification of its surroundings. CeO2 nanoparticles, which were obtained using water-in-oil (W/O) microemulsion and calcined at various temperatures, were used as chemical additive for the modification of bR. X-ray diffraction (XRD) shows that the mean particle sizes for the samples calcined at 500 and 800 degrees C are approximately 10 and 30 nm, respectively. We prepared CeO2 nanoparticle modified poly(vinyl alcohol) (bR-PVA) films with an optical density of about 1.5 at the ground state. It is observed that the lifetime of the Wintermediate for the modified films is prolonged compared with that of the unmodified ones, and the lifetime increases with decreasing particle size. A probable mechanism, which is likely to involve effective molecular interactions between the CeO2 nanoparticles and the bR molecules, is discussed. The hydroxyl groups, which might arise from the interaction between the nanoparticles and the surrounding water molecules, help to lower the ability of the Schiff base of uptaking protons in the Wintermediate. The results indicate that controlling the interactions between biomolecules and various nanomaterials would enlarge the functionality and the range of the application of nanoparticles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Graft copolymerization in the molten state is of fundamental importance as a probe of chemical modification and reactive compatibilization. However, few grafting kinetic studies on reactive extrusion have been carried out because of the inherent difficulties, as expected. In this work, we have studied chain propagation kinetics on melt grafting using pre-irradiated linear low density polyethylene (LLDPE) and three monomers, acrylic acid (AA), methacrylic acid (MAA), and methyl methacrylate (MMA), as the model system. We measured the apparent chain propagation rate coefficients of grafting (k(p,g)) and homopolymerization (k(p,h)) at an initial stage for the melt grafting by FT-IR spectroscopy and electron spin resonance spectroscopy. It was observed that the convective mixing affected the rate coefficients. The magnitude of k(p,h) and k(p,g) were in the same order, but k(p,h) was slightly larger than k(p,g) The k(p,g) of the three grafting systems increased in the order: LLDPE/MMA < LLDPE/MAA < LLDPE/AA. These results are explained in terms of phase separation, solubility, and inherent reactivity of the monomer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Atomic force microscope (AFM)-based scanned probe oxidation (SPO) nanolithography has been carried out on an octadecyl-terminated Si(111) surface to create dot-array patterns under ambient conditions in contact mode. The kinetics investigations indicate that this SPO process involves three stages. Within the steadily growing stage, the height of oxide dots increases logarithmically with pulse duration and linearly with pulse voltage. The lateral size of oxide dots tends to vary in a similar way. Our experiments show that a direct-log kinetic model is more applicable than a power-of-time law model for the SPO process on an alkylated silicon in demonstrating the dependence of oxide thickness on voltage exposure time within a relatively wide range. In contrast with the SPO on the octodecysilated SiO2/silicon surface, this process can be realized by a lower voltage with a shorter exposure time, which will be of great benefit to the fabrication of integrated nanometer-sized electronic devices on silicon-based substrates. This study demonstrates that the alkylated silicon is a new promising substrate material for silicon-based nanolithography.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Scanned probe oxidation (SPO) nanolithography has been performed with an atomic force microscope (AFM) on an octadecyl-terminated silicon (111) surface to create protuberant oxide line patterns under ambient conditions in contact mode. The kinetic investigations of this SPO process indicate that the oxide line height increases linearly with applied voltage and decreases logarithmically with writing, speed. The oxide line width also tends to vary with the same law. The ambient humidity and the AFM tip state can remarkably influence this process, too. As compared with traditional octadecylsilated SiO2/Si substrate, such a substrate can guarantee the SPO with an obviously lowered voltage and a greatly increased writing speed. This study demonstrates that such alkylated silicon is a promising silicon-based substrate material for SPO nanolithography.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Graft copolymerization in the molten state is of fundamental importance as a probe of chemical modification and reactive compatibilization. However, few grafting kinetics studies on reactive extrusion were carried out for the difficulties as expected. In this work, the macromolecular peroxide-induced grafting of acrylic acid and methyl methacrylate onto linear low density polyethylene by reactive extrusion was chosen as the model system for the kinetics study; the samples were taken out from the barrel at five ports along screw axis and analyzed by FTIR, H-1 NMR, and ESR. For the first time, the time-evolution of reaction rate, the reaction order, and the activation energy of graft copolymerization and homopolymerization in the twin screw extruder were directly obtained. On the basis of these results, the general reaction mechanism was tentatively proposed. It was demonstrated that an amount of chain propagation free radicals could keep alive for several minutes even the peroxides completely decomposed and the addition of monomer to polymeric radicals was the rate-controlled step for the graft copolymerization.