84 resultados para CHAIN TRANSFER POLYMERIZATION
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The reversible addition-fragmentation chain transfer (RAFT) polymerization of acrylonitrile (AN) mediated by 2-cyanoprop-2-yl dithiobenzoate was first applied to synthesize polyacrylonitrile (PAN) with a high molecular weight up to 32,800 and a polydispersity index as low as 1.29. The key to success was ascribed to the optimization of the experimental conditions to increase the fragmentation reaction efficiency of the intermediate radical. In accordance with the atom transfer radical polymerization of AN, ethylene carbonate was also a better solvent candidate for providing higher controlled/living RAFT polymerization behaviors than dimethylformamide and dimethyl sulfoxide. The various experimental parameters, including the temperature, the molar ratio of dithiobenzoate to the initiator, the molar ratio of the monomer to dithiobenzoate, the monomer concentration, and the addition of the comonomer, were varied to improve the control of the molecular weight and polydispersity index. The molecular weights of PANS were validated by gel permeation chromatography along with a universal calibration procedure and intrinsic viscosity measurements. H-1 NMR analysis confirmed the high chain-end functionality of the resultant polymers.
Resumo:
Reversible addition-fragmentation chain transfer polymerization has been successfully applied to polymerize acrylonitrile with dibenzyl trithiocarbonate as the chain-transfer agent. The key to success is ascribed to the improvement of the interchange frequency between dormant and active species through the reduction of the activation energy for the fragmentation of the intermediate. The influence of several experimental parameters, such as the molar ratio of the chain-transfer agent to the initiator [azobis(isobutyronitrile)], the molar ratio of the monomer to the chain-transfer agent, and the monomer concentration, on the polymerization kinetics and the molecular weight as well as the polydispersity has been investigated in detail. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and H-1 NMR analyses have confirmed the chain-end functionality of the resultant polymer.
Resumo:
We have developed a novel strategy for the preparation of ion-bonded supramolecular star polymers by RAFT polymerization. An ion-bonded star supramolecule with six functional groups was prepared from a triphenylene derivative containing tertiary amino groups and trithiocarbonate carboxylic acid, and used as the RAFT agent in polymerizations of tert-butyl acrylate (tBA) and styrene (St). Molecular weights and structures of the polymers were characterized by H-1 NMR and GPC. The results show that the polymerization possesses the character of living free-radical polymerization and the ion-bonded supramolecular star polymers PSt, PtBA, and PSt-b-PtBA, with six well-defined arms, were successfully synthesized.
Resumo:
Reversible addition-fragmentation chain transfer (RAFT) mediated radical polymerizations of allyl methacrylate and undecenyl methacrylate, compounds containing two types of vinyl groups with different reactivities, were investigated to provide hyperbranched polymers. The RAFT agent benzyl dithiobenzoate was demonstrated to be an appropriate chain-transfer agent to inhibit crosslinking and obtain polymers with moderate-to-high conversions. The polymerization of allyl methacrylate led to a polymer without branches but with five- or six-membered rings. However, poly(undecenyl methacrylate) showed an indication of branching rather than intramolecular cycles. The hyperbranched structure of poly(undecenyl methacrylate) was confirmed by a combination of H-1, C-13, H-1-H-1 correlation spectroscopy, and distortionless enhancement by polarization transfer 135 NMR spectra. The branching topology of the polymers was controlled by the variation of the reaction temperature, chain-transfer-agent concentration, and monomer conversion. The significantly lower inherent viscosities of the resulting polymers, compared with those of linear analogues, demonstrated their compact structure,
Resumo:
Well-defined polyacrylonitrile with a higher number-average molecular weight (R.) up to 200,000 and a lower polydispersity index (PDI, 1.7-2.0) was firstly obtained via reversible addition-fragmentation chain transfer (RAFT) process. This was achieved by selecting a stable, easy way to prepare disulfide compound intermediates including bis(thiobenzoyl) disulfide (BTBDS) and bis(thiophenylacetoyl) disulfide (BTPADS) to react with azobis(isobutyronitrile) to directly synthesize RAFT agents in situ.
Resumo:
Branched polystyrenes with abundant pendant vinyl functional groups were prepared via radical polymerization of an asymmetric divinyl monomer, which possesses a higher reactive styryl and a lower reactive butenyl. Employing a fast reversible addition fragmentation chain transfer (RAFT) equilibrium, the concentration of active propagation chains remained at a low value and thus crosslinking did not occur until a high level of monomer conversion. The combination of a higher reaction temperature (120 degrees C) and RAFT agent cumyl dithiobenzoate was demonstrated to be optimal for providing both a more highly branched architecture and a higher polymer yield.
Resumo:
A new asymmetric H-shaped block copolymer (PS)(2)-PEO-(PMMA)(2) has been designed and successfully synthesized by the combination of atom transfer radical polymerization and living anionic polymerization. The synthesized 2,2-dichloro acetate-ethylene glycol (DCAG) was used to initiate the polymerization of styrene by ATRP to yield a symmetric homopolymer (Cl-PS)(2)-CHCCCCH2CH2OH with an active hydroxyl group. The chlorine was removed to yield the (PS)(2)-CHCOOCH2CH2OH ((PS)(2)-OH). The hydroxyl group of the (PS)(2)-OH, which is an active species of the living anionic polymerization, was used to initiate ethylene oxide by living anionic polymerization via DPMK to yield (PS)(2)-PEO-OH. The (PS)(2)-PEO-OH was reacted with the 2,2-dichloro acetyl chloride to yield (PS)(2)-PEO-OCCHCl2 ((PS)(2)-PEO-DCA). The asymmetric H-shaped block polymer (PS)(2)-PEO-(PMMA)(2) was prepared via ATRP of MMA at 130 degrees C using (PS)(2)-PEO-DCA as initiator and CuCl/bPy as the catalyst system. The architectures of the asymmetric H-shaped block copolymers, (PS)(2)-PEO-(PMMA)(2), were confirmed by H-1 NMR, GPC and Fr-IR.
Resumo:
Hyperbranched polymers with numerous pendent norbornene functionalities have been synthesized via the radical polymerization of a novel asymmetrical divinyl monomer hearing a higher reactivity methacrylate group and it lower reactivity norbornene group. Mediated by a rapid reversible addition-fragmentation chain transfer (RAFT) equilibrium, the concentration of polymeric chain radicals is decreased, and thus the gelation did not occur until higher monomer conversions (ca. 90%). An increase in reaction temperature call also significantly promote the formation of the hyperbranched structure owing to the decreased stability of the intermediate radicals derived from the norbornene group, which was confirmed by a model copolymerization system of two single vinyl monomers with similar structures to the vinyl groups in the asymmetrical divinyl monomer. Furthermore, Tri-SEC and conventional Sin-SEC as well as H-1 NMR.
Resumo:
Hyperbranched vinyl polymers were prepared by reversible addition-fragmentation chain transfer ( RAFT) polymerization of a styrenic asymmetric divinyl monomer. This was achieved by using cumyl dithiobenzoate or S-dodecyl-S'-(alpha,alpha'-dimethyl-alpha ''-acetic acid) trithiocarbonate as the chain transfer agent, 1,1'-azobis(cyclohexanecarbonitrile) or thermal initiation as a source of radicals. Cross-linking was inhibited by a rapid RAFT-based equilibrium between active propagation chains and dormant species, and thus a hyperbranched polymer with a monomer conversion as high as 80% was obtained. The hyperbranched structure and properties of the resultant polymers were characterized by a combination of H-1-NMR spectroscopy and a triple detection size exclusion chromatography (TRI-SEC). The hyperbranched vinyl polymer has a broad molecular weight distributions and a low Mark-Houwink exponent alpha value compared with the linear counterpart.
Resumo:
Amphiphilic supramolecular miktoarm star copolymers linked by ionic bonds with controlled molecular weight and low polydispersity have been successfully synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization using an ion-bonded macromolecular RAFT agent (macro-RAFT agent). Firstly, a new tetrafunctional initiator, dimethyl 4,6-bis(bromomethyl)-isophthalate, was synthesized and used as an initiator for atom transfer radical polymerization (ATRP) of styrene to form polystyrene (PSt) containing two ester groups at the middle of polymer chain. Then, the ester groups were converted into tertiary amino groups and the ion-bonded supramolecular macro-RAFT agent was obtained through the interaction between the tertiary amino group and 2-dodecylsulfanylthiocarbonylsulfanyl-2-methyl propionic acid (DMP). Finally, ion-bonded amphiphilic miktoarm star copolymer, (PSt)(2)-poly(N-isopropyl-acrylamide)(2), was prepared by RAFT polymerization of N-isopropylacrylamide (NIPAM) in the presence of the supramolecular macro-RAFT agent. The polymerization kinetics was investigated and the molecular weight and the architecture of the resulting star polymers were characterized by means of H-1-NMR, FTIR, and GPC techniques. (c) 2008 Wiley Periodicals, Inc.
Resumo:
The strong polar group, sulfonic acid, has successfully been introduced into ethylene/allylbenzene copolymers without degradation or crosslinking via chlorosulfonation reaction with chlorosulfonic acid as a chlorosulforiating agent in 1, 1,2,2-tetrachloroethane followed by hydrolysis. The degree of sulforiation (DS) can be easily controlled by changing the ratio of chlorosulfonic acid to the pendant phenyls of the copolymer. The microstructure of sulfonated copolymers were unambiguously revealed by H-1 NMR and H-1-H-1 COSY spectral analyses, which indicates that all the sulforiation reactions exclusively took place at the para-position of the aromatic rings.
Resumo:
Living characteristics of facilely prepared Ziegler-Natta type catalyst system consisting of iron(III) 2-ethylhexanoate, triisobutylaluminum and diethyl phosphite have been found in the polymerization of 1,3-butadiene in hexane at 40 degrees C. The characteristics have been well demonstrated by: a first-order kinetics with respect to monomer conversion, a narrow molecular weight distribution (M-w/M-n = 1.48-1.52) of polybutadiene in the entire range of polymerization conversion and a good linearity between M-n and the yield of polymer. Feasible post-polymerization of 1,3-butadiene and block co-polymerization of 1,3-butadiene and isoprene further support the living natures of the catalyst bestowed with.
Resumo:
High-solids, low-viscosity, stable polyacrylamide (PAM) aqueous dispersions were prepared by dispersion polymerization of acrylamide in aqueous solution of ammonium sulfate (AS) using Poly (sodium acrylic acid) (PAANa) as the stabilizer, ammonium persulfate (APS) or 2,2'-Azobis (N,N'-dimethyleneisobutyramidine) dihydrochloride (VA-044) as the initiator. The molecular weight of the formed PAM, ranged from 710, 000 g/mol to 4,330,000 g/mol, was controlled by the addition of sodium formate as a conventional chain-transfer agent. The progress of a typical AM dispersion polymerization was monitored with aqueous size exclusion chromatography. The influences, of the AS concentration, the poly(sodium acrylic acid) concentration, the initiator type and concentration, the chain-transfer agent concentration and temperature Oil the monomer conversion, the dispersion viscosity, the PAM molecular weight and distribution, the particle size and morphology were systematically investigated.