92 resultados para CERIUM OXIDE CATALYSTS

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the effect of cerium oxide on the precipitation of Ag nanoparticles in silicate glass via a femtosecond laser irradiation and successive annealing. Absorption spectra show that Ce3+ ions may absorb part of the laser energy via multiphoton absorption and release free electrons, resulting in an increase of the concentration of Ag atoms and a decrease of the concentration of hole-trapped color centers, which influence precipitation of the Ag nanoparticles. In addition, we found that the formed Ag-0 may reduce Ce4+ ions to Ce3+ ions during the annealing process, which inhibits the growth of the Ag nanoparticles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ce1-XNiXO2 oxides with X varying from 0.05 to 0.5 were prepared by different methods and characterized by XRD and TPR techniques. Ce(0.7)Mi(0.3)O(2) sample prepared by sol-gel method shows the highest reducibility and the highest catalytic activity for methane combustion. Three kinds of Ni phases co-exist in the Ce1-XNiXO2 catalysts prepared by sol-gel method: (i) aggregated NiO on the support CeO2, (ii) highly dispersed NiO with strong interaction with CeO2 and (iii) Ni atoms incorporated into CeO2 lattice. The distribution of different Ni species strongly depends on the preparation methods. The highly dispersed NiO shows the highest activity for methane combustion. The NiO aggregated on the support CeO2 shows lower catalytic activity for methane combustion, while the least catalytic activity is found for the Ni species incorporated into CeO2. Any oxygen vacancy formed in CeO2 lattice due to the incorporating of Ni atoms adsorbs and activates the molecular oxygen to form active oxygen species. So the highest catalytic activity for methane combustion on Ce0.7Ni0.3O2 catalyst is attributed not only to the highly dispersed Ni species but also to the more active oxygen species formed. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phase stability of lanthanum cerium oxide (La2Ce2O7), which is stable up to 1400 degrees C, and the thermal expansion coefficient of La2Ce2O7 doped with Ta2O5 or WO3 were studied. The thermal expansion coefficient of La2Ce2O7 below 400 degrees C was increased by adding more CeO2 or doping with either Ta2O5 or WO3.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bulk material and coatings of Lanthanum-Cerium Oxide (La2Ce2O7) with a fluorite structure were studied as a candidate material for thermal barrier coating (TBC). It has been showed that such material has the properties of low thermal conductivity about four times lower than YSZ, the difference in the thermal expansion coefficient between La2Ce2O7 and bond coat is smaller than that of YSZ in TBC systems, high phase stability between room temperature and 1673 K, about 300 K higher than that of the YSZ. The coating prepared by electron beam physical vapor deposition (EB-PVD) showed that it has good thermal cycling behavior, implying that Such material can be a promising thermal barrier coating material. The deviation of coating composition from ingot can be overcome by the addition of excess La2O3 during ingot preparation and/or by adjusting the process parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neodymium-cerium oxide (Nd2Ce2O7) was proposed as a new thermal barrier coating material in this work. Monolithic Nd2Ce2O7 powder was prepared by the solid-state reaction at 1400 degrees C. The phase composition, thermal stability and thermophysical properties of Nd2Ce2O7 were investigated. Nd2Ce2O7 with fluorite structure was thermally stable in the temperature range of interest for TBC applications. The results indicated that the thermal expansion coefficient (TEC) of Nd2Ce2O7 was higher than that of YSZ (6-8 Wt-% Y2O3 + ZrO2) and even more interesting was the TEC change as a function of temperature paralleling that of the superalloy bond coat. Moreover, the thermal conductivity of Nd2Ce2O7 is 30% lower than that of YSZ, which was discussed based on the theory of heat conduction. Thermal barrier coating of Nd2Ce2O7 was produced by atmospheric plasma spraying (APS) using the spray-dried powder. The thermal cycling was performed with a gas burner test facility to examine the thermal stability of the as-prepared coating.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mixed oxides, including YBa2Cu3O7, LaBa2Cu3O7, LaBaCu2O5, La2BaCu3O7, La4BaCu5O12 with perovskite structure, were prepared. The catalysts were characterized by means of chemical analysis, XRD, TPD and TPR method. It was found that they were the active catalysts for the NO decomposition and NO reduction by CO. The existance of Cu3+ is an important factor to give the catalysts a high activity for the NO reduction by CO.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adsorption and activation of small molecules NO, CO and CO+ NO on LaSrCuO4, La2CuO4 and La1.7Th0.3CuO4 which are typical samples in the sence of nonstoichiometric oxygen(lambda) anrong the series of La2-x(SrTh)(x)CuO4 +/-lambda mixed oxide catalysts were studied by means of MS- TPD (TPSR ), XRD, chemical analysis and so on. It was shown that the adsorption amount of NO can be correlated with the content of oxygen vacancy while the types and strength of adsorption of NO could be related to the oxidation state of the metallic ion. It was also found that CO molecule was first converted into CO32- and then desorbed in the form of CO2 at high temperature during the adsorption and desorption of CO on the mixed oxide with oxygen vacancy. The fact that the profiles of TPD(TPSR) of NO in co-adsorption of NO+CO and in single NO adsorption are similar shows that the adsorption of NO molecule not only has some priority to that of CO but also is stronger than that of CO. It seems that the adsorption of NO plays a dominate role in the activation and decomposition of NO.