10 resultados para CATFISHES
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Several recent molecular phylogenetic studies of the sisorid catfishes (Sisoridae) have challenged some aspects of their traditional taxonomy and cladistic hypotheses of their phylogeny. However, disagreement with respect to relationships within this family in these studies highlights the need for additional data and analyses. Here we subjected 15 taxa representing 12 sisorids genera to comprehensive phylogenetic analyses using the second intron of low-copy nuclear S7 ribosomal protein (rpS7) gene and the mitochondrial 16S rRNA gene segments both individually and in combination. The competing sisorid topologies were then tested by using the approximately unbiased (AU) test and the Shimodaira-Hasegawa (SH) test. Our results support previously suggested polyphyly of Pareuchiloglanis. The genus Pseudecheneis is likely to be nested in the glyptosternoids and Glaridoglanis might be basal to the tribe Glyptosternini. However, justified by AU and SH test, the sister-group relationship between Pseudecheneis and the monophyletic glyptosternoids cannot be rejected based on the second intron of rpS7 gene and combined data analyses. It follows that both gene segments are not suitable for resolving the phylogenetic relationships within the sisorid catfishes. Overall, the second intron of rpS7 gene yielded poor phylogenetic performance when compared to 16S rRNA gene, the evolutionary hypothesis of which virtually agreed with the combined data analyses tree. This phenomenon can be explained by the insufficient length and fast saturation of substitutions in the second intron of rpS7 gene, due to substitution patterns such as frequent indels (insertion/deletion events) of bases in the sequences during the evolution.
Resumo:
We explore the intrafamilial relationships of East Asian bagrid catfishes (Hemibagrus, Pseudobagrus, Pelteobagrus, and Leiocassis) based on 245 sequences of 1092 bp mitochondrial cytochrome b fragments. Four haplotypes were found to be shared by Pseudobagrus ussuriensis, Pelteobagrus vachelli and Pelteobagrus nitidus. Phylogenetic trees were performed using the neighbor joining, maximum parsimony, maximum likelihood, and Bayesian likelihood methods. The phylogenetic trees based on NJ, MP, ML and BL inferences strongly support polyphyleticism for the currently recognized genera Pseudobagrus, Pelteobagrus and Leiocassis. However, the species currently assigned to these three genera form a robustly monophyletic group with relatively low genetic divergence. The structure of maxillary barbels and serrations on the anterior edge of the pectoral spines seem to be indicatory of appropriate phylogenetic traits. We propose that only Hemibagrus and Pseudobagrus are the only valid genera of East Asian bagrids.
Resumo:
The family Sisoridae is one of the largest and most diverse Asiatic catfish families, most species occurring in the water systems of the Qinhai-Tibetan Plateau and East Himalayas. To date published morphological and molecular phylogenetics hypotheses of sisorid catfishes are part congruent, and there are some areas of significant disagreement with respect to intergeneric relationships. We used mitochondrial cytochrome b and 16S rRNA gene sequences to clarify existing gaps in phylogenetics and to test conflicting vicariant and dispersal biogeographical hypotheses of Chinese sisorids using dispersal-vicariance analysis and weighted ancestral area analysis in combination with palaeogeographical data as well as molecular clock calibration. Our results suggest that: (1) Chinese sisorid catfishes form a monophyletic group with two distinct clades, one represented by (Gagata (Bagarius, Glyptothorax)) and the other by (glyptosternoids, Pseudecheneis); (2) the glyptosternoid is a monophyletic group and Glyptosternum, Glaridoglanis, and Exostoma are three basal species having a primitive position among it; (3) a hypothesis referring to Pseudecheneis as the sister group of the glyptosternoids, based on morphological evidence, is supported; (4) the genus Pareuchiloglanis, as presently defined, is not monophyletic; (5) congruent with previous hypotheses, the uplift of Qinghai-Tibetan Plateau played a primary role in the speciation and radiation of the Chinese sisorids; and (6) an evolutionary scenario combining aspects of both vicariance and dispersal theory is necessary to explain the distribution pattern of the glyptosternoids. In addition, using a cytochrome b substitution rate of 0.91% per million years and 0.23% for 16S rRNA, we tentatively date that the glyptosternoids most possibly originated in Oligocene-Miocene boundary (19-24Myr), and radiated from Miocene to Pleistocene, along with a center of origin in the Irrawaddy-Tsangpo drainages and several rapid speciation in a relatively short time. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Two little-known nematode species of the genus Spinitectus Fourment, 1883, S. petrowi Belous, 1965 (prevalence 25%, intensity 1-8) and S. gigi Fujita, 1927 (prevalence 10%, intensity 2-3), were collected from the gastrointestinal tract of the yellow catfish, Pelteobagrus fulvidraco (Richardson), from Liangzihu Lake, Hubei Province, central China, in September of 2002. The light and scanning electron microscopical examination of this material, supplemented by a few museum specimens of S. gigi collected from the catfish Clarias fuscus (Lacepede) in southern China, made it possible to study in detail the morphology of these parasite species and to redescribe them. The first species, whose correct name is S. petrowi Belous, 1965, exhibits some morphological features (e.g., unusually short vestibule, shape of pseudolabia and of the left spicule) not found in most other congeners; a unique feature is the presence of peculiar pairs of transversely oriented peg-like cuticular spines with rounded ends on the ventral surface of the female tail. Spinitectus gigi was found to have 28-31 cuticular spines in the first ring, relatively long distances between the 2nd-7th rings of spines, and anterior rings divided into 2 sectors; the excretory pore is located at the level of the 4th ring of cuticular spines; males posses 4 pairs of preanal- and 6 pairs of postanal caudal papillae and a pair of small phasmids. Spinitectus bagri Wang, Wu et Yu, 1993 and S. wulingensis Yu et Wang, 1997 are considered junior synonyms of S. petrowi, whereas S. clariasi Ky, 1971, S. ophicephali Ky, 1971 and S. yuanjiangensis Wang, Wit et Yu, 1997 are regarded to be junior synonyms of S. gigi. Spinitectus petrowi was not previously reported from China.
Resumo:
Partial sequences of mitochondrial 16S rRNA gene were obtained by PCR amplification for comparisons among nine species of glyptosternoid fishes and six species of non-glyptosternoids representing 10 sisorid genera. There are compositional biases in the A-rich impaired regions and G-rich paired regions. A-G transitions are primarily responsible for the Ts/Tv bias in impaired regions. The overall substitution rate in impaired regions is almost two times higher than that in the paired regions. Saturation plots at comparable levels of sequence divergence demonstrate no saturation effects. Phylogenetic analyses using both maximum likelihood and Bayesian methods support the monophyly of Sisoridae. Chinese sisorid catfishes are composed of two major lineages, one represented by (Gagata (Bagarius, Glyptothorax)) and the other by "glyptosternoids + Pseudecheneis". The glyptosternoids may not be a monophyletic group. A previous hypothesis referring to Pseudecheneis as the sister group of monophyletic glyptosternoids, based on morphological evidence, is not supported by the molecular data. Pseudecheneis is shown to be a sister taxon of Glaridoglanis. Pareuchiloglanis might be paraphyletic with Pseudexostoma and Euchiloglanis. Our results also support the hypothesis that Pareuchiloglanis anteanalis might be considered as the synonyms of Pareuchiloglanis sinensis, and genus Euchiloglanis might have only one valid species, Euchiloglanis davidi.
Resumo:
The mitochondrial DNA cytochrome b gene was sequenced from 8 bagrid catfishes in China. Aligned with cytochrome b sequences from 9 bagrid catfishes in Japan, Korea and Russia retrieved from GenBank, and selected Silurus meridionalis, Liobagrus anguillicauda, Liobagrus reini and Phenacogrammus interruptus as outgroups, we constructed a matrix of 21 DNA sequences. The Kimura's two-parameter distances were calculated and molecule phylogenetic trees were constructed by using the maximum parsimony (MP) and neighbor-joining (NJ) methods. The results show that (i) there exist 3-bp deletions of mitochondrial cytochrome b gene compared with cypriniforms and characiforms; (ii) the molecular phylogenetic tree suggests that bagrid catfishes form a monophyletic group, and the genus Mystus is the earliest divergent in the East Asian bagrid catfishes, as well as the genus Pseudobagrus is a monophyletic group but the genus Pelteobagrus and Leiocassis are complicated; and 60 the evolution rate of the East Asian bagrids mitochondrial cytochrome b gene is about 0.18%-0.30% sequence divergence per million years.
Resumo:
我国曾经记录有(鱼芒)科鱼类4种.国际上近年来对(鱼芒)科鱼类的分类进行了许多重要的修订,物种数量已达3属22种.我国的(鱼芒)科鱼类也因长时间没有进行及时的分类修订而存在许多疑问.基于国内自1960年以来所收集的珍贵标本和记录,确认我国记录有(鱼芒)科鱼类1属3种.它们是:长丝(鱼芒)(Pangasius sanitwongsei Smith)、贾巴(鱼芒)(Pangasius djambal Bleeker)、短须(鱼芒)(Pangasius micronemus Bleeker).在此基础上,根据掌握的资料对我国(鱼芒)科鱼类的种群现状和濒危原因、洄游的性质及洄游群体数量下降原因以及水电站建设对大型洄游鱼类的影响进行了分析.以往记录显示,捕获时间都集中于4-5月份,无冬季捕获记录.捕获季节与(鱼芒)科鱼类产卵繁殖季节高度吻合,提示其上溯到我国澜沧江下游应属生殖洄游,而不是索饵洄游.被捕获记录主要出现于20世纪60-70年代,之后则数量锐减.导致这种情况发生的主要原因可能有三方面:1)下游湄公河对(鱼芒)科鱼类的捕捞压力过大;2)湄公河-澜沧江航运船只对(鱼芒)科鱼类有损害作用;3)由于西南季风变化的影响,澜沧江径流量发生变化,可能间接导致(鱼芒)科鱼类洄游行为发生改变.分析显示,(鱼芒)科鱼类的洄游与3-4月份澜沧江流量呈密切相关规律,提示适合鱼类产卵的雨季及西南夏季风比往年较早到达该地区,从而激发它们较往年提前启动生殖洄游,并且溯河的高度较高.以往的捕获记录还表明,(鱼芒)科鱼类主要洄游至景洪下方的澜沧江河段及支流补远江,上述水域是其喜好的产卵场之一.景洪大桥以下的干支流不适合建设水电站,因为电站大坝必然会阻断(鱼芒)科鱼类的繁殖洄游,影响其繁殖活动.而景洪大桥上方的干流电站不在(鱼芒)科鱼类正常繁殖洄游通道中,大坝阻隔作用对(鱼芒)科鱼类的影响相对较小.建议把补远江建设成为鱼类和水生生物保护区.
Resumo:
Amblycipitidae Day, 1873 is an Asian family of catfishes (Siluriformes) usually considered to contain 28 species placed in three genera: Amblyceps (14 spp.), Liobagrus (12 spp.) and Xiurenbagrus (2 spp.). Morphology-based systematics has supported the monophyly of this family, with some authors placing Amblycipitidae within a larger group including Akysidae, Sisoridae and Aspredinidae, termed the Sisoroidea. Here we investigate the phylogenetic relationships among four species of Amblyceps, six species of Liobagrus and the two species of Xiurenbagrus with respect to other sisoroid taxa as well as other catfish groups using 6100 aligned base pairs of DNA sequence data from the rag1 and rag2 genes of the nuclear genome and from three regions (cyt b, COL ND4 plus tRNA-His and tRNA-Ser) of the mitochondrial genome. Parsimony and Bayesian analyses of the data indicate strong support for a diphyletic Amblycipitidae in which the genus Amblyceps is the sister group to the Sisoridae and a clade formed by genera Liobagrus and Xiurenbagrus is the sister group to Akysidae. These taxa together form a well supported monophyletic group that assembles all Asian sisoroid taxa, but excludes the South American Aspredinidae. Results for aspredinids are consistent with previous molecular studies that indicate these catfishes are not sisoroids, but the sister group to the South American doradoid catfishes (Auchenipteridae + Doradidae). The redefined sisoroid clade plus Bagridae, Horabagridae and (Ailia + Laides) make up a larger monophyletic group informally termed "Big Asia." Likelihood-based SH tests and Bayes Factor comparisons of the rag and the mitochondrial data partitions considered separately and combined reject both the hypothesis of amblycipitid monophyly and the hypothesis of aspredinid inclusion within Sisoroidea. This result for amblycipitids conflicts with a number of well documented morphological synapomorphies that we briefly review. Possible nomenclatural changes for amblycipitid taxa are noted.