566 resultados para CATALYTIC ETHENE POLYMERIZATION
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Isoprene polymerization with indolide-imine supported rare-earth metal alkyl and amidinate complexes
Resumo:
Reaction of 7-{(N-2,6-R)iminomethyl)}lindole (HL1, R = dimethylphenyl; HL2, R = diisopropylphenyl) and rare-earth metal tris(alkyl)s, Ln(CH2SiMe3)(3)(THF)(2), generated new rare-earth metal bis(alkyl) complexes LLn(CH2SiMe3)(2)(THF) [L = L-1: Ln = Lu. (1a), Sc (1b); L = L-2 : Ln = Lu (3a), Se (3b)] and mono(alkyl) complexes L-2 Lu-2(CH2SiMe3) (4a). Treatment of alkyl complexes 1a and 4a with N,N'-diisopropylcarbodiimide afforded the corresponding amidinates (LLu)-Lu-1{iPr(2)NC(CH2SiMe3) NiPr2}(2) (2a) and L-2 Lu-2{iPr(2)NC(CH2SiMe3)NiPr2} (5a), respectively.
Resumo:
A series of enolic Schiff base aluminum(III) complexes LAIR (where L = NNOO-tetradentate enolic Schiff base ligand) containing ligands that differ in their steric and electronic properties were synthesized. Their single crystals showed that these complexes are five -coordinated around the aluminum center. Their coordination geometries are between square pyramidal and trigonal bipyramidal. Their catalytic properties in the solution polymerization of racemic lactide (rac-LA) were examined. The modifications in the auxiliary ligand exhibited a dramatic influence on the catalytic performance.
Resumo:
Polyaniline is prepared by chemical polymerization of aniline in an acidic solution using H2O2 as an oxidant and ferrous chloride as a catalyst. A wide variety of synthesis parameters are studied, such as the amount of the catalyst, reaction temperature, reaction time, initial molar ratio of oxidant, monomer and catalyst, and aniline and HCl concentrations. The polymerization of aniline can be initiated by a very small amount of catalyst. The yield and the conductivity of product depend on the initial molar ratio of the oxidant and monomer. The polyaniline with a conductivity of about 10 degrees S/cm and a yield of 60% is prepared under optimum conditions. The process of polymerization was studied by in situ ultraviolet-visible spectroscopy and open-circuit potential technology. Compared to the polymerization process in a (NH4)(2)S2O8 system, the features of the H2O2-Fe2+ system are pointed out, and the chain growth mechanism is proposed. (C) 1999 John Wiley & Sons, Inc.
Resumo:
Treatment of indenyl-modified imidazolium bromide [C9H7CH2CH2(NCHCHN(C6H2Me3-2,4,6)CH)Br] ((IndH-NHC-H)Br) with rare earth metal tetra(alkyl) lithium (Ln(CH2SiMe3)(4)Li(THF)(4)) or with (trimethylsilylmethyl)lithium (LiCH2SiMe3) and rare earth metal tris(alkyl)s (Ln(CH2SiMe3)(3)(THF)(2)) sequentially afforded the first NHC-stabilized monomeric rare earth metal bis(alkyl) complexes (Ind-NHC)Ln(CH2SiMe3)(2) (1, Ln = Y; 2, Ln = Lu; 3, Ln = Sc) via double-deprotonation reactions. Complexes 1-3 are THF-free isostructural monomers. The monoanionic Ind-NHC species bond to the central metal ion in a eta(5):kappa(1) constrained geometry configuration (CGC) mode, which combine with the two cis-located alkyl moieties to form a tetrahedron ligand core, leading to the chirality of the complexes. Under the presence of activators AlEt3 and [Ph3C][B(C6F5)(4)], complex 2 showed catalytic activity toward the polymerization of isoprene to afford 3,4-regulated polyisoprene (91%).
Rare earth metal complexes bearing thiophene-amido ligand: Synthesis and structural characterization
Resumo:
2,6-Diisopropyl-N-(2-thienylmethyl) aniline ( H2L) has been prepared, which reacted with equimolar rare earth metal tris( alkyl)s, Ln( CH2SiMe3)(3)( THF)(2), afforded rare earth metal mono( alkyl) complexes, LLn(CH2SiMe3)(THF)(3) ( 1: Ln = Lu; 2: Ln = Y). In this process, H2L was deprotonated by one metal alkyl species followed by intramolecular C-H activation of the thiophene ring to generate dianionic species L2- with the release of two tetramethylsilane. The resulting L2- combined with three THF molecules and an alkyl unit coordinates to Y3+ and Lu3+ ions, respectively, in a rare N,C-bidentate mode, to generate distorted octahedron geometry ligand core. Whereas, with treatment of H2L with equimolar Sc(CH2SiMe3)(3)( THF)(2), a heteroleptic complex ( HL)( L) Sc( THF) ( 3) was isolated as the main product, where the dianionic L2- species bonds to Sc3+ via chelating N, C atoms whilst the monoanionic HL connects to Sc3+ in an S,N-bidentate mode. All complexes 1-3 have been characterized by NMR spectroscopy and X-ray diffraction analysis.
Resumo:
A series of new titanium complexes bearing two regioisomeric trifluoromethyl-containing enaminoketonato ligands (3a-h and 6a-h), [PhN=CRCHC(CF3)O](2)TiCl2 (3a, R = Me; 3b, R = n-C5H11; 3c, R = i-Pr; 3d, R = Cy; 3e, R = t-Bu; 3f, R = CH=CHPh; 3g, R = Et; 3h, R = n-C11H23) and [PhN=C(CF3)CHC(R)O](2)TiCl2 (6a, R = Ph; 6b, R = n-C5H11; 6c, R = i-Pr; 6d, R = Cy; 6e, R = t-Bu; 6f, R = CH=CHPh; 6g, R = CHPh2; 6h, R = CF3) have been synthesized and characterized. X-ray crystal structures analyses suggest that complexes 3c-e and 6c-d all adopt a distorted octahedral geometry around the titanium center. Complexes 3c, 3d and 6c display a cis-configuration of the two chlorine atoms around the titanium center, while complex 6d shows a trans-configuration of the two chlorine atoms. Especially, the configurational isomers (cis and trans) of complex 3e were identified both in solution and in the solid state by NMR and X-ray analyses. With modified methylaluminoxane as a cocatalyst, all the complexes are active towards ethylene polymerization, and produce high molecular weight polymers.
Resumo:
Alkane elimination reactions of amino-amino-bis(phenols) H2L1-4, Salan H2L5, and methoxy-beta-diimines HL6,7 with lanthanide tris(alkyl) s, Ln(CH2SiMe3)(3)(THF)(2) (Ln = Y, Lu), respectively, afforded a series of lanthanide alkyl complexes 1-8 with the release of tetramethylsilane. Complexes 1-6 are THF-solvated mono( alkyl) s stabilized by O, N, N, O-tetradentate ligands. Complexes 1-3 and 5 adopt twisted octahedral geometry, whereas 4 contains a tetragonal bipyramidal core. Bearing a monoanionic moiety L-6 (L-7), complex 7 ( 8) is a THF-free bis(alkyl). In complex 7, the O, N, N-tridentate ligand combined with two alkyl species forms a tetrahedral coordination core. Complexes 1, 2, and 3 displayed modest activity but high stereoselectivity for the polymerization of rac-lactide to give heterotactic polylactide with the racemic enchainment of monomer units P-r ranging from 0.95 to 0.99, the highest value reached to date. Complex 5 exhibited almost the same level of activity albeit with relatively low selectivity. In contrast, dramatic decreases in activity and stereoselectivity were found for complex 4. The Salan yttrium alkyl complex 6 was active but nonselective. Bis(alkyl) complexes 7 and 8 were more active than 1-3 toward polymerization of rac-LA, however, to afford atactic polylactides due to di-active sites. The ligand framework, especially the "bridge" between the two nitrogen atoms, played a significant role in governing the selectivity of the corresponding complexes via changing the geometry of the metal center.
Resumo:
Treatment of yttrium tris(alkyl)s, Y(CH2SiMe3)(3)(THF)(2), by equimolar H(C5Me4)SiMe3(HCp') and indene (Ind-H) afforded (eta(5)-Cp')Y(CH2SiMe3)(2)(THF) (1) and (eta(5)-Ind)Y(CH2SiMe3)(2)(THF) (2) via alkane elimination, respectively. Complex 1 reacted with methoxyamino phenols, 4,6-(CH3)(2)-2-[(MeOCH2CH2)(2)-NCH2]-C6H2-OH (HL1) and 4,6-(CMe3)(2)-2-[(MeOCH2CH2)(2)-NCH2]-C6H2OH (HL2) gave mixed ligands supported alkyl complexes [(eta(5)-Cp')(L)]Y(CH2SiMe3) (3: L = L-1; 4: L = L-2). Whilst, complex 2 was treated with HL2 to yield [(eta(5)-Ind)(L-2)]Y(CH2SiMe3) (5). The molecular structures of 3 and 5 were confirmed by X-ray diffraction to be mono(alkyl)s of THF-free, adopting pyramidal and tetragonal-bipyramidal geometry, respectively. Complexes 3 and 5 were high active initiators for the ring-opening polymerization Of L-lactide to give isotactic polylactide with high molecular weight and narrow to moderate polydispersity.
Resumo:
A catalyst with porous polystyrene beads supported Cp2ZrCl2 was prepared and tested for ethylene polymerization with methylaluminoxane as a cocatalyst. By comparison, the porous supported catalyst maintained higher activity and produced polyethylene with better morphology than its corresponding solid supported catalyst. The differences between activities of the catalysts and morphologies of the products were reasonably explained by the fragmentation processes of support as frequently observed with the inorganic supported Ziegler-Natta catalysts. Investigation into the distribution of polystyrene in the polyethylene revealed the fact that the porous polystyrene supported catalyst had undergone fragmentation during polymerization.
Resumo:
Three heteroligated (salicylaldiminato)(beta-enaminoketonato)titanium complexes [3-Bu-t-2-OC6H3CH=N(C6F5)][(p-XC6H4)N=C(Bu-t)CHC(CF3)O]TiCl2 (3a: X = F, 3b: X = Cl, 3c: X = Br) were synthesized and investigated as the catalysts for ethylene polymerization and ethylene/norbornene copolymerization. In the presence of modified methylaluminoxane as a cocatalyst, these unsymmetric catalysts exhibited high activities toward ethylene polymerization, similar to their parallel parent catalysts. Furthermore, they also displayed favorable ability to efficiently incorporate norbornene into the polymer chains and produce high molecular weight copolymers under the mild conditions, though the copolymerization of ethylene with norbornene leads to relatively lower activities. The sterically open structure of the beta-enaminoketonato ligand is responsible for the high norbornene incorporation. The norbornene concentration in the polymerization medium had a profound influence on the molecular weight distribution of the resulting copolymer.
Resumo:
A series of salicylaldimine-based neutral Ni(II) complexes (3a-j) [ArN = CH(C6H40)]Ni(PPh3)Ph [3a,Ar = C6H5; 3b,Ar = C6H4F(o); 3c, Ar = C6H4F(m); 3d, Ar = C6H4F(p); 3e, Ar = C6H3F2(2,4); 3f, Ar = C6H3F2(2,5); 3g, Ar = C6H3F2(2,6); 3h, Ar = C6H3F2(3,5); 3i, Ar = C6H2F3(3,4,5); 3j, Ar = C6H5] have been synthesized in good yield, and the structures of complexes 3a and 3i have been confirmed by X-ray crystallographic analysis. Using modified methylaluminoxane as a cocatalyst, these neutral Ni(II) complexes exhibited high catalytic activities for the vinylic polymerization of norbornene.
Resumo:
A series of novel vanadium(III) complexes bearing iminopyrrolide chelating ligands [2-(RN=CH)C4H3N]V(THF)(2)Cl-2 (2a: R = cyclohexyl; 2b: R = Ph; 2c: R = 2,6-iPr(2)C(6)H(3); 2d: R = p-CF3C6H4; 2e: R = C6F5) have been synthesized and characterized. Single-crystal X-ray diffraction revealed that complexes 2a, 2c and 2e adopt an octahedral geometry around the vanadium center. In the presence of Et2AlCl as a co-catalyst, these complexes displayed high catalytic activities up to 48.6 kg PE mmol(V)(-1) h(-1) bar(-1) for ethylene polymerization, and produced high molecular weight polymers. 2a-e/Et2AlCl catalytic systems were tolerant to elevated temperature (70 degrees C) and yielded unimodal polyethylenes, indicating the single site behaviour of these catalysts. By pre-treating with equimolar amounts of alkylaluminums, functional alpha-olefin 10-undecen-1-ol can be efficiently incorporated into polyethylene chains. 10-Undecen-1-ol incorporation can easily reach 15.8 mol% under the mild conditions.
Resumo:
The N,N- bidentate ligands 2- {( N- 2,6- R) iminomethyl)} pyrrole ( HL1, R) dimethylphenyl; HL2, R) diisopropylphenyl) have been prepared. HL1 reacted readily with 1 equiv of lanthanide tris( alkyl)s, Ln(CH2SiMe3)(3)(THF)(2), affording lanthanide bis(alkyl) complexes L(1)Ln(CH2SiMe3)(2)(THF)(n) (1a, Ln= Lu, n = 2; 1b, Ln = Sc, n = 1) via alkane elimination. Reaction of the bulky ligand HL2 with 1 equiv of Ln(CH2SiMe3)(3)( THF)(2) gave the bis(pyrrolylaldiminato) lanthanide mono(alkyl) complexes L(2)(2)Ln- (CH2SiMe3)(THF) (2a, Ln) Lu; 2b, Ln = Sc), selectively. The N,N- bidentate ligand HL3, 2- dimethylaminomethylpyrrole, reacted with Ln( CH2SiMe3) 3( THF) 2, generating bimetallic bis( alkyl) complexes of central symmetry ( 3a, Ln = Y; 3b, Ln = Lu; 3c, Ln = Sc). Treatment of the N,N,N,N- tetradentate ligand H2L4, 2,2'-bis(2,2-dimethylpropyldiimino) methylpyrrole, with equimolar Lu(CH2SiMe3)(3)(THF)(2) afforded a C-2- symmetric binuclear complex ( 4). Complexes 3a, 3b, 3c, and 4 represent rare examples of THF- free binuclear lanthanide bis( alkyl) complexes supported by non- cyclopentadienyl ligands. All complexes have been tested as initiators for the polymerization of isoprene in the presence of AlEt3 and [ Ph3C][B(C6F5)(4)]. Complexes 1a, 1b, and 3a show activity, and 1b is the most active initiator, whereas 2a, 2b, 3b, 3c, and 4 are inert.
Resumo:
Reactions of neutral amino phosphine compounds HL1-3 with rare earth metal tris(alkyl)s, Ln(CH2SiMe3)(3)(THF)(2), afforded a new family of organolanthanide complexes, the molecular structures of which are strongly dependent on the ligand framework. Alkane elimination reactions between 2-(CH3NH)-C6H4P(Ph)(2) (HL1) and Lu(CH2SiMe3)(3)(THF)(2) at room temperature for 3 h generated mono(alkyl) complex (L-1)(2)Lu(CH2SiMe3)(THF) (1). Similarly, treatment of 2-(C6H5CH2NH)-C6H4P(Ph)(2) (HL2) with Lu(CH2SiMe3)(3)(THF)(2) afforded (L-2)(2)Lu(CH2SiMe3)(THF) (2), selectively, which gradually deproportionated to a homoleptic complex (L-2)(3)Lu (3) at room temperature within a week. Strikingly, under the same condition, 2-(2,6-Me2C6H3NH)-C6H4P(Ph)(2) (HL3) swiftly reacted with Ln(CH2SiMe3)(3)(THF)(2) at room temperature for 3 h to yield the corresponding lanthanide bis(alkyl) complexes L(3)Ln(CH2SiMC3)(2)(THF)(n) (4a: Ln = Y, n = 2; 4b: Ln = Sc, n = 1; 4c: Ln = Lu, n = 1; 4d: Ln = Yb, n = 1; 4e: Ln = Tm, n = 1) in high yields. All complexes have been well defined and the molecular structures of complexes 1, 2, 3 and 4b-e were confirmed by X-ray diffraction analysis. The scandium bis(alkyl) complex activated by AlEt3 and [Ph3C][B(C6F5)(4)], was able to catalyze the polymerization of ethylene to afford linear polyethylene.
Resumo:
Methoxy-modified beta-diimines HL1 and HL2 reacted with Y(CH2SiMe3)(3)(THF)(2) to afford the corresponding bis(alkyl)s [(LY)-Y-1(CH2SiMe3)(2)] (1) and [(LY)-Y-2(CH2SiMe3)(2)] (2), respectively. Amination of 1 with 2,6-diisopropyl aniline gave the bis(amido) counterpart [(LY)-Y-1{N(H)(2,6-iPr(2)-C6H3)}(2)] (3), selectively. Treatment of Y(CH2SiMe3)(3)(THF)(2) with methoxy-modified anilido imine HL3 yielded bis(alkyl) complex [(LY)-Y-3(CH2SiMe3)(2)(THF)] (4) that sequentially reacted with 2,6-diisopropyl aniline to give the bis(amido) analogue [(LY)-Y-3{N(H)(2,6-iPr(2)-C6H3)}(2)] (5). Complex 2 was "base-free" monomer, in which the tetradentate beta-diiminato ligand was meridional with the two alkyl species locating above and below it, generating tetragonal bipyramidal core about the metal center. Complex 3 was asymmetric monomer containing trigonal bipyramidal core with trans-arrangement of the amido ligands. In contrast, the two cis-located alkyl species in complex 4 were endo and exo towards the 0,N,N tridentate anilido-imido moiety. The bis(amido) complex 5 was confirmed to be structural analogue to 4 albeit without THF coordination. All these yttrium complexes are highly active initiators for the ring-opening polymerization Of L-LA at room temperature.