3 resultados para Cálculo infinitesimal

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nonlinear amplitude equation, which was derived by Jian Yongjun employing expansion of two-time scales in inviscid fluids in a vertically oscillating circular cylindrical vessel, is modified by introducing a damping term due to the viscous dissipation of this system. Instability of the surface wave is analysed and properties of the solutions of the modified equation are determined together with phase-plane trajectories. A necessary condition of forming a stable surface wave is obtained and unstable regions are illustrated. Research results show that the stable pattern of surface wave will not lose its stability to an infinitesimal disturbance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experimental stress-strain data of OFHC copper first under torsion to 13% and then under torsion-tension to about 10% are used to study the characteristics of three elastic-plastic constitutive models: Chaboche's super-positional nonlinear model, Dafalias and Popov's two surface model and Watanabe and Atluri's version of the endochronic model. The three models, originally oriented for infinitesimal deformation, have been extended for finite deformation. The results show (a) the Mises-type yield surface used in the three models brings about significant departure of the predictions from the experimental data; (b) Chaboche's and Dafalias' models are easier than Watanabe and Atluri's model in determining the material parameters in them, and (c) Chaboche's and Watanabe & Atluri's models produce almost the same prediction to the data, while Dafalias' model cannot accurately predict the plastic deformations when a loading path changes in its direction. Copyright (C) 1996 Elsevier Science Ltd

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the absence of external loading, surface tension will induce a residual stress field in the bulk of nano structures. However, in the prediction of mechanical properties of nano structures, the elastic response of the bulk is usually described by classical Hooke’s law, in which the aforementioned residual stress was neglected in the existing literatures. The present paper investigates the influences of surface tension and the residual stress in the bulk induced by the surface tension on the elastic properties of nano structures. We firstly present the surface elasticity in the Lagrangian and the Eulerian descriptions and point out that even in the case of infinitesimal deformations the reference and the current configurations should be discriminated; otherwise the out-plane terms of surface displacement gradient, associated with the surface tension, may sometimes be overlooked in the Eulerian descriptions, particularly for curved and rotated surfaces. Then, the residual stress in the bulk is studied through the non-classical boundary conditions and used to construct the linear elastic constitutive relations for the bulk material. Finally, these relations are adopted to analyze the size-dependent properties of pure bending of Al nanowires. The present results show that surface tension will considerably affect the effective Young’s modulus of Al nanowires, which decrease with either the decrease of nanowires thickness or the increase of the aspect ratio.