11 resultados para Burocreatic tensions
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The perturbed-chain statistical associating fluid theory and density-gradient theory are used to construct an equation of state (EOS) applicable for the phase behaviors of carbon dioxide aqueous solutions. With the molecular parameters and influence parameters respectively regressed from bulk properties and surface tensions of pure fluids as input, both the bulk and interfacial properties of carbon dioxide aqueous solutions are satisfactorily correlated by adjusting the binary interaction parameter (k(ij)). Our results show that the constructed EOS is able to describe the interfacial properties of carbon dioxide aqueous solutions in a wide temperature range, and illustrate the influences of temperature, pressure, and densities in each phase on the interfacial properties.
Resumo:
The excess Helmholtz free energy functional for associating hard sphere fluid is formulated by using a modified fundamental measure theory [Y. X. Yu and J. Z. Wu, J. Chem. Phys. 117, 10156 (2002)]. Within the framework of density functional theory, the thermodynamic properties including phase equilibria for both molecules and monomers, equilibrium plate-fluid interfacial tensions and isotherms of excess adsorption, average molecule density, average monomer density, and plate-fluid interfacial tension for four-site associating hard sphere fluids confined in slit pores are investigated. The phase equilibria inside the hard slit pores and attractive slit pores are determined according to the requirement that temperature, chemical potential, and grand potential in coexistence phases should be equal and the plate-fluid interfacial tensions at equilibrium states are predicted consequently. The influences of association energy, fluid-solid interaction, and pore width on phase equilibria and equilibrium plate-fluid interfacial tensions are discussed.
Resumo:
It is demonstrated that when tension leg platform (TLP) moves with finite amplitude in waves, the inertia force, the drag force and the buoyancy acting on the platform are nonlinear functions of the response of TLP. The tensions of the tethers are also nonlinear functions of the displacement of TLP. Then the displacement, the velocity and the acceleration of TLP should be taken into account when loads are calculated. In addition, equations of motions should be set up on the instantaneous position. A theoretical model for analyzing the nonlinear behavior of a TLP with finite displacement is developed, in which multifold nonlinearities are taken into account, i.e., finite displacement, coupling of the six degrees of freedom, instantaneous position, instantaneous wet surface, free surface effects and viscous drag force. Based on the theoretical model, the comprehensive nonlinear differential equations are deduced. Then the nonlinear dynamic analysis of ISSC TLP in regular waves is performed in the time domain. The degenerative linear solution of the proposed nonlinear model is verified with existing published one. Furthermore, numerical results are presented, which illustrate that nonlinearities exert a significant influence on the dynamic responses of the TLP.
Resumo:
This article is the result of experimental studies of the rheologv, viscosities, surface tensions, and atomization of water-methanol and diesel emulsions. The Span 80 and Tween 60 are employed to make three emulsifying agents, Y01, Y02, and Y03, with viscosity of 1.32-1.5 Pa s and HLB values of 5.36, 4.83, and 4.51, respectively. In the water-in-oil emulsions, the aqueous phase is between 10% and 50%; the agent concentration added is 0.8-8.0%. The viscosity of the emulsions is 0.003-0.02 Pa s, and the surface tens ion is 0.04-0.1 N/m. The types and concentrations of agents significantly influence the viscosity of the emulsions, and the higher concentration of the aqueous phase (<50%) in creases the viscosities of the emulsions, especially for higher agent concentration. Interfacial membrane and HLB values of the agents can explain all these phenomena. Higher aqueous phase concentration and agent viscosity results in larger Sauter mean diameter.
Resumo:
In this paper, we attempted to construct a constitutive model to deal with the phenomenon of cavitation and cavity growth in a rubber-like material subjected to an arbitrary tri-axial loading. To this end, we considered a spherical elementary representative volume in a general Rivlin's incompressible material containing a central spherical cavity. The kinematics proposed by [Hou, H.S., Abeyaratne, R., 1992. Cavitation in elastic and elastic-plastic solids. J. Mech. Phys. Solids 40, 571-722] was adopted in order to construct an approximate but optimal field. In order to establish a suitable constitutive law for this class of materials, we utilized the homogenisation technique that permits us to calculate the average strain energy density of the volume. The cavity growth was considered through a physically realistic failure criterion. Combination of the constitutive law and the failure criterion enables us to describe correctly the global behaviour and the damage evolution of the material under tri-axial loading. It was shown that the present models can efficiently reproduce different stress states, varying from uniaxial to tri-axial tensions, observed in experimentations. Comparison between predicted results and experimental data proves that the proposed model is accurate and physically reasonable. Another advantage is that the proposed model does not need special identification work, the initial Rivlin's law for the corresponding incompressible material is sufficient to form the new law for the compressible material resulted from cavitation procedure. (C) 2007 Elsevier Ltd. All rights reserved.
The Influence of Viscosity and Surface Tension on Atomization of Water/Methanol and Diesel Emulsions
Resumo:
This paper shows the result of experimental studies of the influence of viscosities, surface tensions on atomization characteristics of water/methanol and diesel emulsions. Three emulsifying agents Y01, Y02 and Y03, with viscosity of 1.32 ~ 1.5 Pa·s and HLB values of 5.36, 4.83 and 4.51 respectively was produced by Span 80 and Tween 60. In the W/O emulsions, the aqueous phase is between 10% and 50%; the agent concentration added is 0.8 ~ 8.0%. The viscosity of the emulsions is 0.003 ~ 0.02 Pa·s, and the surface tension is 0.04 ~ 0.1 N/m. The types and concentrations of agents and the aqueous phase ( < 50%) significantly influence the viscosity of the emulsions and the Sauter Mean Diameter, measured by Malvern Particle Analyzer SERIES 2600.
Resumo:
Abstract. The atomic motion is coupled by the fast and slow components due to the high frequency vibration of atoms and the low frequency deformation of atomic lattice, respectively. A two-step approximate method was presented to determine the atomic slow motion. The first step is based on the change of the location of the cold potential well bottom and the second step is based on the average of the appropriate slow velocities of the surrounding atoms. The simple tensions of one-dimensional atoms and two-dimensional atoms were performed with the full molecular dynamics simulations. The conjugate gradient method was employed to determine the corresponding location of cold potential well bottom. Results show that our two-step approximate method is appropriate to determine the atomic slow motion under the low strain rate loading. This splitting method may be helpful to develop more efficient molecular modeling methods and simulations pertinent to realistic loading conditions of materials.
Resumo:
The history of Laplace's equations for spherical and cylindrical droplets and the concept of dividing surface in Gibbs' thermodynamic theory of capillary phenomena are briefly reviewed. The existing theories of surface tensions of cylindrical droplets are briefly reviewed too. For cylindrical droplets, a new method to calculate the radius and the surface tension of the surface of tension is given. This method is suitable to be used by molecular dynamics simulations.
Resumo:
The atomic motion is coupled by the fast and slow components due to the high frequency vibration of atoms and the low frequency deformation of atomic lattice, respectively. A two-step approximate method was presented to determine the atomic slow motion. The first step is based on the change of the location of the cold potential well bottom and the second step is based on the average of the appropriate slow velocities of the surrounding atoms. The simple tensions of one-dimensional atoms and two-dimensional atoms were performed with the full molecular dynamics simulations. The conjugate gradient method was employed to determine the corresponding location of cold potential well bottom. Results show that our two-step approximate method is appropriate to determine the atomic slow motion under the low strain rate loading. This splitting method may be helpful to develop more efficient molecular modeling methods and simulations pertinent to realistic loading conditions of materials.
Resumo:
Molecular dynamics simulations are adopted to calculate the equation of state characteristic parameters P*, rho*, and T* of isotactic polypropylene (iPP) and poly(ethylene-co-octene) (PEOC), which can be further used in the Sanchez-Lacombe lattice fluid theory (SLLFT) to describe the respective physical properties. The calculated T* is a function of the temperature, which was also found in the literature. To solve this problem, we propose a Boltzmann fitting of the data and obtain T* at the high-temperature limit. With these characteristic parameters, the pressure-volume-temperature (PVT) data of iPP and PEOC are predicted by the SLLFT equation of state. To justify the correctness of our results, we also obtain the PVT data for iPP and PEOC by experiments. Good agreement is found between the two sets of data. By integrating the Euler-Lagrange equation and the Cahn-Hilliard relation, we predict the density profiles and the surface tensions for iPP and PEOC, respectively. Furthermore, a recursive method is proposed to obtain the characteristic interaction energy parameter between iPP and PEOC. This method, which does not require fitting to the experimental phase equilibrium data, suggests an alternative way to predict the phase diagrams that are not easily obtained in experiments.
Resumo:
The contact angles theta of some liquids on ethylene-propylene copolymer-grafted-glycidyl methacrylate (EPM-g-GMA) were measured. The critical surface tensions r(c) of EPM-g-GMA were evaluated by the Zisman Plot (cos theta versus r(L)), Young-Dupre-Good-Girifalco plot (1 + cos theta versus 1/r(L)(0.5)) and log (1 + cos theta) versus log(r(L)) plot. The following results were obtained: the r(c) values varied significantly with the estimation methods. The critical surface tension r(c) decreased with the increase of the degree of grafting of EPM-g-GMA.