2 resultados para Buoys
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
A new algorithm based on the multiparameter neural network is proposed to retrieve wind speed (WS), sea surface temperature (SST), sea surface air temperature, and relative humidity ( RH) simultaneously over the global oceans from Special Sensor Microwave Imager (SSM/I) observations. The retrieved geophysical parameters are used to estimate the surface latent heat flux and sensible heat flux using a bulk method over the global oceans. The neural network is trained and validated with the matchups of SSM/I overpasses and National Data Buoy Center buoys under both clear and cloudy weather conditions. In addition, the data acquired by the 85.5-GHz channels of SSM/I are used as the input variables of the neural network to improve its performance. The root-mean-square (rms) errors between the estimated WS, SST, sea surface air temperature, and RH from SSM/I observations and the buoy measurements are 1.48 m s(-1), 1.54 degrees C, 1.47 degrees C, and 7.85, respectively. The rms errors between the estimated latent and sensible heat fluxes from SSM/I observations and the Xisha Island ( in the South China Sea) measurements are 3.21 and 30.54 W m(-2), whereas those between the SSM/ I estimates and the buoy data are 4.9 and 37.85 W m(-2), respectively. Both of these errors ( those for WS, SST, and sea surface air temperature, in particular) are smaller than those by previous retrieval algorithms of SSM/ I observations over the global oceans. Unlike previous methods, the present algorithm is capable of producing near-real-time estimates of surface latent and sensible heat fluxes for the global oceans from SSM/I data.
Resumo:
Ocean wind speed and wind direction are estimated simultaneously using the normalized radar cross sections or' corresponding to two neighboring (25-km) blocks, within a given synthetic aperture radar (SAR) image, having slightly different incidence angles. This method is motivated by the methodology used for scatterometer data. The wind direction ambiguity is removed by using the direction closest to that given by a buoy or some other source of information. We demonstrate this method with 11 EN-VISAT Advanced SAR sensor images of the Gulf of Mexico and coastal waters of the North Atlantic. Estimated wind vectors are compared with wind measurements from buoys and scatterometer data. We show that this method can surpass other methods in some cases, even those with insufficient visible wind-induced streaks in the SAR images, to extract wind vectors.