10 resultados para Bottlenose dolphins
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The interclick intervals of captive dolphins are known to be longer than the two-way transit time between the dolphin and a target. In the present study, the interclick intervals of free-ranging baiji, finless porpoises, and bottlenose dolphins in the wild and in captivity were compared. The click intervals in open waters ranged up to 100-200 ms, whereas the click intervals in captivity were in the order of 4-28 ms. Echolocation of free-ranging dolphins appears to adapt to various distance in navigation or ranging, sometimes up to 140 m. Additionally, the difference of waveform characteristics of clicks between species was recognized in the frequency of maximum energy and the click duration. (C) 1998 Acoustical Society of America. [S0001-4966(98)06609-0].
Resumo:
SINE (short interspersed element) insertion analysis elucidates contentious aspects in the phylogeny of toothed whales and dolphins (Odontoceti), especially river dolphins. Here, we characterize 25 informative SINEs inserted into unique genomic loci during evolution of odontocetes to construct a cladogram. and determine a total of 2.8 kb per taxon of the flanking sequences of these SINE loci to estimate divergence times among lineages. We demonstrate that: (i) Odontocetes are monophyletic; (ii) Ganges River dolphins, beaked whales, and ocean dolphins diverged (in this order) after sperm whales; (iii) three other river dolphin taxa, namely the Amazon, La Plata, and Yangtze river dolphins, form a monophyletic group with Yangtze River dolphins being the most basal; and (iv) the rapid radiation of extant cetacean lineages occurred some 28-33 million years B.P., in strong accord with the fossil record. The combination of SINE and flanking sequence analysis suggests a topology and set of divergence times for odontocete relationships, offering alternative explanations for several long-standing problems in cetacean evolution.
Resumo:
Yangtze finless porpoises were surveyed by using simultaneous visual and acoustical methods from 6 November to 13 December 2006. Two research vessels towed stereo acoustic data loggers, which were used to store the intensity and sound source direction of the high frequency sonar signals produced by finless porpoises at detection ranges up to 300 m on each side of the vessel. Simple stereo beam forming allowed the separation of distinct biosonar sound source, which enabled us to count the number of vocalizing porpoises. Acoustically, 204 porpoises were detected from one vessel and 199 from the other vessel in the same section of the Yangtze River. Visually, 163 and 162 porpoises were detected from two vessels within 300 m of the vessel track. The calculated detection probability using acoustic method was approximately twice that for visual detection for each vessel. The difference in detection probabilities between the two methods was caused by the large number of single individuals that were missed by visual observers. However, the sizes of large groups were underestimated by using the acoustic methods. Acoustic and visual observations complemented each other in the accurate detection of porpoises. The use of simple, relatively inexpensive acoustic monitoring systems should enhance population surveys of free-ranging, echolocating odontocetes. (C) 2008 Acoustical Society of America.
Resumo:
C-values, which estimate genome size, have puzzled geneticists for years because they bear no relationship to organismal complexity. Though C-values have been estimated for thousands of species, considerably more data are required in order to better understanding genome evolution. This is particularly true for mammals, in which C-values are known for less than 8% of the total number of mammalian species. Among marine mammals, a C-value has been estimated only for the bottlenose dolphin (Tursiops truncatus). Thus examination of additional species of marine mammals is necessary for comparative purposes. It will enable a better understanding of marine mammal genome evolution, and it is also relevant to conservation, because larger genome size has been linked to increased likelihood of extinction in some plant and animal groups. Our study presents C-values of seven marine mammal species, including five cetacean species that are endangered to varying degrees. Similarly to the results for other groups, our results suggest that larger genome size in cetaceans is related to an increased likelihood of extinction.
Sonar gain control in echolocating finless porpoises (Neophocaena phocaenoides) in an open water (L)
Resumo:
Source levels of echolocating free-ranging Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientalis) were calculated using a range estimated by measuring the time delays of the signals via the surface and bottom reflection paths to the hydrophone, relative to the direct signal. Peak-to-peak source levels for finless porpoise were from 163.7 to 185.6 dB re:1 mu Pa. The source levels are highly range dependent and varied approximately as a function of the one-way transmission loss for signals traveling from the animals to the hydrophone. (c) 2006 Acoustical Society of America.
Resumo:
Simultaneous tone-tone masking in conjunction with the envelope-following response (EFR) recording was used to obtain tuning curves in porpoises Phocoena phocoena and Neophocaena phocaenoides asiaeorientalis. The EFR was evoked by amplitude-modulated probes with a modulation rate of 1000 Hz and carrier frequencies from 22.5 to 140 kHz. Equivalent rectangular quality Q(ERB) of the obtained tuning curves varied from 8.3-8.6 at lower (22.5-32 kHz) probe frequencies to 44.8-47.4 at high (128-140 kHz) frequencies. The QERB dependence on probe frequency could be approximated by regression lines with a slope of 0.83 to 0.86 in log-log scale., which corresponded to almost frequency-proportional quality and almost constant bandwidth of 34 kHz. Thus, the frequency representation in the porpoise auditory system is much closer to a constant-bandwidth rather that to a constant-quality manner. (c) 2006 Acoustical Society of America.
Resumo:
The signals of dolphins and porpoises often exhibit a multi-pulse structure. Here, echolocation signal recordings were made from four geometrically distinct positions of seven Yangtze finless porpoises temporarily housed in a relatively small, enclosed area. Some clicks demonstrated double-pulse, and others multi-pulse, structure. The interpulse intervals between the first and second pulse of the double- and multi-pulse clicks were significantly different among data from the four different positions (p < 0.01, one-way ANOVA). These results indicate that the interpulse interval and structure of the double- and multi-pulse echolocation signals depend on the hydrophone geometry of the animal, and that the double- and multi-pulse structure of echolocation signals in Yangtze finless porpoise is not caused by the phonating porpoise itself, but by the multipath propagation of the signal. Time delays in the 180 degrees phase-shifted surface reflection pulse and the nonphase-shifted bottom reflection pulse of the multi-pulse structures, relative to the direct signal, can be used to calculate the distance to a phonating animal. (c) 2005 Acoustical Society of America.
Resumo:
Detecting objects in their paths is a fundamental perceptional function of moving organisms. Potential risks and rewards, such as prey, predators, conspecifics or non-biological obstacles, must be detected so that an animal can modify its behaviour accordingly. However, to date few studies have considered how animals in the wild focus their attention. Dolphins and porpoises are known to actively use sonar or echolocation. A newly developed miniature data logger attached to a porpoise allows for individual recording of acoustical search efforts and inspection distance based on echolocation. In this study, we analysed the biosonar behaviour of eight free-ranging finless porpoises (Neophocaena phocaenoides) and demonstrated that these animals inspect the area ahead of them before swimming silently into it. The porpoises inspected distances up to 77 in, whereas their swimming distance without using sonar was less than 20 in. The inspection distance was long enough to ensure a wide safety margin before facing real risks or rewards. Once a potential prey item was detected, porpoises adjusted their inspection distance from the remote target throughout their approach.
Resumo:
Whistles were recorded and analyzed from free-ranging single or mixed species groups of boto and tucuxi in the Peruvian Amazon, with sonograms presented. Analysis revealed whistles recorded falling into two discrete groups: a low-frequency group with maximum frequency below 5 kHz, and a high-frequency group with maximum frequencies above 8 kHz and usually above 10 kHz. Whistles in the two groups differed significantly in all five measured variables (beginning frequency, end frequency, minimum frequency, maximum frequency, and duration). Comparisons with Published details of whistles by other platanistoid river dolphins and by oceanic dolphins suggest that the low-frequency whistles were produced by boto, the high-frequency whistles by tucuxi. Tape recordings obtained on three occasions when only one species was present tentatively support this conclusion, but it is emphasized that this is based on few data. (C) 2001 Acoustical Society of America.
Resumo:
The four species of "river dolphins" are associated with six separate great river systems on three subcontinents and have been grouped for more than a century into a single taxon based on their similar appearance. However, several morphologists recently questioned the monophyly of that group. By using phylogenetic analyses of nucleotide sequences from three mitochondrial and two nuclear genes, we demonstrate with statistical significance that extant river dolphins are not monophyletic and suggest that they are relict species whose adaptation to riverine habitats incidentally insured their survival against major environmental changes in the marine ecosystem or the emergence of Delphinidae.