14 resultados para Bos taurus taurus
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Hybridization between yak Poephagus grunniens and taurine Bos taurus or indicine B. indicus cattle has been widely practiced throughout the yak geographical range, and gene flow is expected to have occurred between these species. To assess the impact of cattle admixture on domestic yak, we examined 1076 domestic yak from 29 populations collected in China, Bhutan, Nepal, India, Pakistan, Kyrgyzstan, Mongolia and Russia using mitochondrial DNA and 17 autosomal microsatellite loci. A cattle diagnostic marker-based analysis reveals cattle-specific mtDNA and/or autosomal microsatellite allele introgression in 127 yak individuals from 22 populations. The mean level of cattle admixture across the populations, calculated using allelic information at 17 autosomal microsatellite loci, remains relatively low (mY(cattle) = 2.66 +/- 0.53% and Q(cattle) = 0.69 +/- 2.58%), although it varies a lot across populations as well as among individuals within population. Although the level of cattle admixture shows a clear geographical structure, with higher levels of admixture in the Qinghai-Tibetan Plateau and Mongolian and Russian regions, and lower levels in the Himalayan and Pamir Plateau region, our results indicate that the level of cattle admixture is not significantly correlated with the altitude across geographical regions as well as within geographical region. Although yak-cattle hybridization is primarily driven to produce F-1 hybrids, our results show that the subsequent gene flow between yak and cattle took place and has affected contemporary genetic make-up of domestic yak. To protect yak genetic integrity, hybridization between yak and cattle should be tightly controlled.
Resumo:
Genetic variation of 31 blood protein loci in 236 cattle from eight South China populations (including mithan, Bos frontalis) and a Holstein population was investigated by means of horizontal starch gel electrophoresis. Thirteen loci (ALB, CAR, Hb-b, Np, PGM, Amy-I, PEP-B, AKP, 6PGD, Cp, Pa, EsD, and TF) were found to be polymorphic. The comparison of average heterozygosities (H) shows that all the native cattle embrace a rich genetic diversity Our results on protein polymorphism suggest that cattle in China originated mainly from Bos indicus and Bos taurus; Xuwen, Hainan, Wenshan, and Dehong cattle and the Dehong zebu are close to zebu-type cattle, and Diqing and Zhaotong cattle are close to the taurine. The mithan was very different from other native cattle, and we suggest that its origin was complicated and may be influenced by other cattle species.
Resumo:
Ten restriction endonucleases were used to investigate the mitochondrial DNA restriction fragment length polymorphism (mtDNA RFLP) of 11 native cattle breeds and one cultivated cattle breed in South China. Twenty-three restriction morphs were detected, which can be sorted into five haplotypes, A phylogenetic tree of the haplotypes was constructed by using the 'upgma' method. Our study showed that haplotype I and II are identical to the zebu (Bos indicus) and taurine (Bos taurus) haplotypes, respectively. Zebu and taurine were the two major origins of cattle populations in South China, and the zebu probably had more influence on the native cattle population than taurine did. Haplotype III is identical to haplotype I of yak (Bos grunniens), which was only detected in the Diqing cattle breed. Haplotype IV was detected for the first time. This haplotype, found only in Dehong cattle, might be from an independent domestication event, probably from another Bos indicus population. Divergence of haplotypes I and IV occurred about 268,000-535 000 years ago, much earlier than the 10,000-year history of cattle husbandry. Our results also suggest a secondary introgression of mtDNA from yak to Diqing cattle.
Resumo:
Cu, Zn superoxide dismutases (SODs) are rnetalloenzymes that represent one important line of defence against reactive oxygen species (ROS). A cytoplasmic Cu. Zn SOD cDNA sequence was cloned from scallop Chlamys farreri by the homology-based cloning technique. The full-length cDNA of scallop cytoplasmic Cu, Zn SOD (designated CfSOD) was 1022 bp with a 459 bp open reading frame encoding a polypeptide of 153 amino acids. The predicted amino acid sequence of CfSOD shared high identity with cytoplasmic Cu. Zn SOD in molluscs, insects, mammals and other animals, such as cytoplasmic Cu, Zn SOD in oyster Crassostrea sostrea gigas (CAD42722), mosquito Aedes aegypti (ABF18094), and cow Bos taurus (XP_584414). A quantitative reverse transcriptase real-time PCR (qRT-PCR) assay was developed to assess the mRNA expression of CfSOD in different tissues and the temporal expression of CfSOD in scallop challenged with Listonella anguillarum, Micrococcus luteus and Candida lipolytica respectively. Higher-level mRNA expression of CfSOD was detected in the tissues of haemocytes, gill filaments and kidney. The expression of CfSOD dropped in the first 8-16 h and then recovered after challenge with L. anguillarum and M. litteus, but no change was induced by the C. lipolytica challenge. The results indicated that CfSOD was a constitutive and inducible acute-phase protein, and could play an important role in the immune responses against L. anguillarum and M. luteus infection. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
RPLP1 is one of acidic ribosomal phosphoproteins encoded by RPLP1 gene, which plays an important role in the elongation step of protein synthesis. The cDNA of RPLP1 was cloned successfully for the first time from the Giant Panda (Ailuropoda melanoleuca) using RT-PCR technology, which was also sequenced, analyzed preliminarily and expressed in E. coli. The cDNA fragment cloned is 449bp in size, containing an open reading frame of 344bp encoding 114 amino acids. Alignment analysis indicated that the nucleotide sequence and the deduced amino acid sequence are highly conserved to other five species studied, including Homo sapiens, Mus musculus, Rattus norvegicus, Bos Taurus and Sus scrofa. The homologies for nucleotide sequences of Giant Panda PPLP1 to that of these species are 92.4%, 89.8%, 89.0%, 91.3% and 87.5%, while the homologies for amino acid sequences are 96.5%, 94.7%, 95.6%, 96.5% and 88.6%. Topology prediction showed there are three Casein kinase II phosphorylation sites and two N-myristoylation sites in the RPLP1 protein of the Giant Panda (Ailuropoda melanoleuca). The RPLP1 gene was overexpressed in E. coli and the result indicated that RPLP1 fusion with the N-terminally His-tagged form gave rise to the accumulation of an expected 18kDa polypeptide, which was in accordance with the predicted protein and could also be used to purify the protein and study its function.
Resumo:
对10 头原种婆罗门牛mtDNA D2loop 全序列912 bp 测序, 婆罗门牛遗传多样性丰富, 检测到的9 种单 倍型兼有瘤牛( B . indicus) 与普通牛( B . taurus) 的遗传背景, 核苷酸变异率为6125 % , 单倍型多态度为01978 ± 01054 , 核苷酸多态度为01014 30 ±01008 68。所有单倍型聚为明显的两大分支, 婆罗门牛的大部分单倍型为普通 牛单倍型类群, 并占绝对优势(90 %) , 仅Brah26 与亚洲瘤牛聚在一起, 属于亚洲瘤牛线粒体单倍型, 表明婆罗门 牛的确是集亚洲瘤牛、欧洲普通牛等优良特性于一身(易产犊、产肉性能好、耐热与体表寄生虫等) 的瘤牛品种之 一。育种学家引种瘤牛的目的是改善当地牛的生产力与适应性, 现代普通牛表现出明显又普遍的瘤牛渐渗现象。 对现代的瘤牛品种而言, 除亚洲瘤牛品种外, 普通牛对其他瘤牛品种育成的贡献同样高。支持瘤牛( B . indicus ) 为独立驯化、起源于印度次大陆的假说。
Resumo:
In 6 Chinese yak (Bos. grunniens) populations including 177 yaks, 34 blood protein loci were studied by horizontal starch gel electrophoresis, four of these loci (AKP: ALB, LDH-1, TF) were found to be polymorphic. The percentage of polymorphic loci(P) is 0.118, the mean individual heterozygosity(H) is 0.015, which means a low level of genetic diversity in the whole Chinese yak population. The coefficient of gene differentiation (G(ST)) is 0.0625, which indicated an almost-indistinguishable divergence among different populations at the level of blood protein electrophoresis.
Resumo:
Mitochondrial DNAs (mtDNA) from 21 yaks (Bos grunniens) were assayed for restriction fragment length polymorphisms by using 20 restriction endonucleases, six of which (AvaI, AvaII, BglII, EcoRI, HindIII, and HpaI) detected polymorphism. Four different mtD
Resumo:
To investigate the karyotypic relationships between Chinese muntjac (Muntiacus reevesi), forest musk deer (Moschus berezovskii) and gayal (Bos frontalis), a complete set of Chinese muntjac chromosome-specific painting probes has been assigned to G-banded chromosomes of these three species. Sixteen autosomal probes (i.e. 6-10, 12-22) of the Chinese muntjac each delineated one pair of conserved segments in the forest musk deer and gayal, respectively. The remaining six autosomal probes (1-5, and 11) each delineated two to five pairs of conserved segments. In total, the 22 autosomal painting probes of Chinese muntjac delineated 33 and 34 conserved chromosomal segments in the genomes of forest musk deer and gayal, respectively. The combined analysis of comparative chromosome painting and G-band comparison reveals that most interspecific homologous segments show a high degree of conservation in G-banding patterns. Eleven chromosome fissions and five chromosome fusions differentiate the karyotypes of Chinese muntjac and forest musk deer; twelve chromosome fissions and six fusions are required to convert the Chinese muntjac karyotype to that of gayal; one chromosome fission and one fusion separate the forest musk deer and gayal. The musk deer has retained a highly conserved karyotype that closely resembles the proposed ancestral pecoran karyotype but shares none of the rearrangements characteristic for the Cervidae and Bovidae. Our results substantiate that chromosomes 1-5 and 11 of Chinese muntjac originated through exclusive centromere-to-telomere fusions of ancestral acrocentric chromosomes. Copyright (C) 2005 S. Karger AG, Basel.
Resumo:
Adaptation to hypoxia is regulated by hypoxia-inducible factor 1 (HIF-1), a heterodimeric transcription factor consisting of an oxygen-regulated a-subunit and a constitutively expressed beta-subunit. How animals living on Qinghai-Tibetan plateau adapt to the extreme hypoxia environment is known indistinctly. In this study, the Qinghai yak which has been living at 3000-5000 m attitude for at least two millions of years was selected as the model of high hypoxia-tolerant adaptation species. The HIF-1 alpha ORFs (open reading frames) encoding for two isoforms of HIF-1 alpha have been cloned from the brain of the domestic yak. Its expression of HIF-1 alpha was analyzed at both mRNA and protein levels in various tissues. Both its HIF-1 alpha mRNA and protein are tissue specific expression. Its HIF-1 alpha protein's high expression in the brain, lung, and kidney showed us that HIF-1 alpha protein may play an important role in the adaptation to hypoxia environment. (c) 2006 Elsevier Inc. All rights reserved.