4 resultados para Black Sea, Southeastern slope
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
This is a report of the study of the authigenic sulfide minerals and their sulfur isotopes in a sediment core (NH-1) collected on the northern continental slope of the South China Sea, where other geophysical and geochemical evidence seems to suggest gas hydrate formation in the sediments. The study has led to the findings: (1) the pyrite content in sediments was relatively high and its grain size relatively large compared with that in normal pelagic or hemipelagic sediments; (2) the shallowest depth of the acid volatile sulfide (AVS) content maximum was at 437.5 cm (> 2 mu mol/g), which was deeper than that of the authigenic pyrite content maximum (at 141.5-380.5 cm); (3) delta S-34 of authigenic pyrite was positive (maximum: +15 parts per thousand) at depth interval of 250-380 cm; (4) the positive delta S-34 coincided with pyrite enrichment. Compared with the results obtained from the Black Sea sediments by Jorgensen and coworkers, these observations indicated that at the NH-1 site, the depth of the sulfate-methane interface (SMI) would be or once was at about 437.5-547.5 cm and the relatively shallow SMI depth suggested high upward methane fluxes. This was in good agreement with the results obtained from pore water sulfate gradients and core head-space methane concentrations in sediment cores collected in the area. All available evidence suggested that methane gas hydrate formation may exist or may have existed in the underlying sediments.
Resumo:
Bottom-simulating reflectors (BSRs) were observed beneath the seafloor in the northern continental margin of the South China Sea (SCS). Acoustic impedance profile was derived by Constrained Sparse Spike Inversion (CSSI) method to provide information on rock properties and to estimate gas hydrate or free gas saturations in the sediments where BSRs are present. In general, gas hydrate-bearing sediments have positive impedance anomalies and free gas-bearing sediments have negative impedance anomalies. Based on well log data and Archie's equation, gas hydrate saturation can be estimated. But in regions where well log data is not available, a quantitative estimate of gas hydrate or free gas saturation is inferred by fitting the theoretical acoustic impedance to sediment impedance obtained by CSSI. Our study suggests that gas hydrate saturation in the Taixinan Basin is about 10 - 20% of the pore space, with the highest value of 50%, and free gas saturation below BSR is about 2 - 3% of the pore space, that can rise to 8 - 10% at a topographic high. The free gas is non-continuous and has low content in the southeastern slope of the Dongsha Islands. Moreover, BSR in the northern continental margin of the SCS is related to the presence of free gas. BSR is strong where free gas occurs.
Resumo:
MASNUM wave-tide-circulation coupled numerical model (MASNUM coupled model, hereinafter) is developed based on the Princeton Ocean Model (POM). Both POM and MASNUM coupled model are applied in the numerical simulation of the upwelling off Yangtze River estuary and in Zhejiang coastal waters in summer. The upwelling mechanisms are analyzed from the viewpoint of tide, and a new mechanism is proposed. The study suggests that the tidally inducing mechanism of the upwelling includes two dynamic aspects: the barotropic and the baroclinic process. On the one hand, the residual currents induced by barotropic tides converge near the seabed, and upwelling is generated to maintain mass conservation. The climbing of the residual currents along the sea bottom slope also contributes to the upwelling. On the other hand, tidal mixing plays a very important role in inducing the upwelling in the baroclinic sea circumstances. Strong tidal mixing leads to conspicuous front in the coastal waters. The considerable horizontal density gradient across the front elicits a secondary circulation clinging to the tidal front, and the upwelling branch appears near the frontal zone. Numerical experiments are designed to determine the importance of tide in inducing the upwelling. The results indicate that tide is a key and dominant inducement of the upwelling. Experiments also show that coupling calculation of the four main tidal constituents(M-2, S-2, K-1, and O-1), rather than dealing with the single M-2 constituent, improves the modeling precision of the barotropic tide-induced upwelling.