15 resultados para Bivariate orthogonal polynomials
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
We analyze mutual alignment errors due to wave-front aberrations. To solve the central obscured problem, we introduce modified Zernike polynomials, which are a set of complete orthogonal polynomials. It is found that different aberrations have different effects on mutual alignment errors. Some aberrations influence only the line of sight, while some aberrations influence both the line of sight and the intensity distributions. (c) 2005 Optical Society of America
Resumo:
Proper orthogonal decomposition (POD) using method of snapshots was performed on three different types of oscillatory Marangoni flows in half-zone liquid bridges of low-Pr fluid (Pr = 0.01). For each oscillation type, a series of characteristic modes (eigenfunctions) have been extracted from the velocity and temperature disturbances, and the POD provided spatial structures of the eigenfunctions, their oscillation frequencies, amplitudes, and phase shifts between them. The present analyses revealed the common features of the characteristic modes for different oscillation modes: four major velocity eigenfunctions captured more than 99% of the velocity fluctuation energy form two pairs, one of which is the most energetic. Different from the velocity disturbance, one of the major temperature eigenfunctions makes the dominant contribution to the temperature fluctuation energy. On the other hand, within the most energetic velocity eigenfuction pair, the two eigenfunctions have similar spatial structures and were tightly coupled to oscillate with the same frequency, and it was determined that the spatial structures and phase shifts of the eigenfunctions produced the different oscillatory disturbances. The interaction of other major modes only enriches the secondary spatio-temporal structures of the oscillatory disturbances. Moreover, the present analyses imply that the oscillatory disturbance, which is hydrodynamic in nature, primarily originates from the interior of the liquid bridge. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
For an anti-plane problem, the differential operator is self-adjoint and the corresponding eigenfunctions belong to the Hilbert space. The orthogonal property between eigenfunctions (or between the derivatives of eigenfunctions) of anti-plane problem is exploited. We developed for the first time two sets of radius-independent orthogonal integrals for extraction of stress intensity factors (SIFs), so any order SIF can be extracted based on a certain known solution of displacement (an analytic result or a numerical result). Many numerical examples based on the finite element method of lines (FEMOL) show that the present method is very powerful and efficient.
Resumo:
The original scanner for tilting orthogonal double prisms is studied to test the tracking performance in intersatellite laser communications. With a reduction ratio of more than 100 times from the change rate of the angle of beam deviation to that of the tilting angle of each prism, the theoretical analysis performed, as well as the verification experiment, indicates that the scanner can meet the requirements of the scanning accuracy superior to 0.5 mu rad with the scanning range greater than 500 mu rad and can facilitate the mechanical structure design. (c) 2006 Optical Society of America.
Resumo:
Aeromonas hydrophila and Vibrio fluvialis are the causative agents of a serious haemorrhagic septicaemia that affects a wide range of freshwater fish in China. In order to develop a bivalent anti-A. hydrophila and anti-V. fluvialis formalin-killed vaccine to prevent this disease, an orthogonal array design (OAD) method was used to optimize the production conditions, using three factors, each having three levels. The effects of these factors and levels on the relative per cent survival for crucian carp were quantitatively evaluated by analysis of variance. The final optimized formulation was established. The data showed that inactivation temperature had a significant effect on the potency of vaccine, but formalin concentration did not. The bivalent vaccine could elicit a strong humoral response in crucian carp (Carassius auratus L.) against both A. hydrophila and V. fluvialis simultaneously, which peaked at 3 or 5 weeks respectively. Antibody titres remained high until week 12, the end of the experiment, after a single intraperitoneal injection. The verification experiment confirmed that an optimized preparation could provide protection for fish at least against A. hydrophila infection, and did perform better than the non-optimized vaccine judged by the antibody levels and protection rate, suggesting that OAD is of value in the development of improved vaccine formulations.
Resumo:
It is well known that the storage capacity may be large if all memory patterns are orthogonal to each other. In this paper, a clear description is given about the relation between the dimension N and the maximal number of orthogonal vectors with components +/-1, and also the conception of attractive index is proposed to estimate the basin of attraction. Theoretic analysis and computer simulation show that each memory pattern's basin of attraction contains at least one Hamming ball when the storage capacity is less than 0.33N which is better than usual 0.15 N.
Resumo:
Orthogonal neighborhood-preserving projection (ONPP) is a recently developed orthogonal linear algorithm for overcoming the out-of-sample problem existing in the well-known manifold learning algorithm, i.e., locally linear embedding. It has been shown that ONPP is a strong analyzer of high-dimensional data. However, when applied to classification problems in a supervised setting, ONPP only focuses on the intraclass geometrical information while ignores the interaction of samples from different classes. To enhance the performance of ONPP in classification, a new algorithm termed discriminative ONPP (DONPP) is proposed in this paper. DONPP 1) takes into account both intraclass and interclass geometries; 2) considers the neighborhood information of interclass relationships; and 3) follows the orthogonality property of ONPP. Furthermore, DONPP is extended to the semisupervised case, i.e., semisupervised DONPP (SDONPP). This uses unlabeled samples to improve the classification accuracy of the original DONPP. Empirical studies demonstrate the effectiveness of both DONPP and SDONPP.
Resumo:
In this paper, the comparison of orthogonal descriptors and Leaps-and-Bounds regression analysis is performed. The results obtained by using orthogonal descriptors are better than that obtained by using Leaps-and-Bounds regression for the data set of nitrobenzenes used in this study. Leaps-and-Bounds regression can be used effectively for selection of variables in quantitative structure-activity/property relationship(QSAR/QSPR) studies. Consequently, orthogonalisation of descriptors is also a good method for variable selection for studies on QSAR/QSPR.
Resumo:
Orthogonal descriptors is a viable method for variable selection, but this method strongly depend on the orthogonalisation ordering of the descriptors. In this paper, we compared the different methods used for order the descriptors. It showed that better results could be achieved with the use of backward elimination ordering. We predicted R-f value of phenol and aniline derivatives by this method, and compared it with classical algorithms such as forward selection, backward elimination, and stepwise procedure. Some interesting hints were obtained.
Resumo:
The present work is first reporting the hemolytic activity of venom from jellyfish Rhopilema esculentum Kishinouye extracted by different phosphate buffer solutions and incubated at different temperature according to the orthogonal test L6(1) x 3(6). Of the seven controllable independent variables, incubated temperature and phenylmethylsulfonyl fluoride (PMSF) had strongest effect on the hemolytic activity. (c) 2006 Elsevier B.V. All rights reserved.