46 resultados para Bitumi ad “alta lavorabilità”, Reologia, Dynamic Shear Rheometer, Master Curve, Zero-Shear Viscosity

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental data are presented to show the influence of alkyl metal phosphates, Shengli resin fraction, and NaCl, on the shear viscosity of interfacial films and the stability of emulsions. It was found that the alkyl metal phosphates and the Shengli resin fraction could enhance the shear viscosity of interfacial films and the stability of emulsions. NaCl (0.01-0.03 mol L-1) could change the shear viscosity of interfacial films containing alkyl metal phosphates and the Shengli resin fraction. The shear viscosity of interfacial films containing ethyl iron phosphate and the Shengli resin fraction decreased with the increase of the concentration of NaCl. On the other hand, NaCl could decrease the stability of the emulsions. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the dynamic shear strength of a unidirectional C/A356.0 composite and A356.0 alloy, respectively, are measured with a split Hopkinson torsional bar (SHTB) technique. The results indicate that the carbon fibers make very little contribution to the enhancement of the shear strength of the matrix material. The microscopic inspections on the fracture surface of the composite show a multi-scale zigzag feature. This implies that there is a complicated shear failure mechanism in the unidirectional carbon/aluminum composite.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rheological behavior and the dynamic mechanical properties of syndiotactic 1,2-polybutadiene (sPB) were investigated by a rotational rheometer (MCR-300) and a dynamic mechanical analyzer (DMA-242C). Rheological behavior of sPB-830, a sPB with crystalline degree of 20.1% and syndiotactic content of 65.1%, showed that storage modulus (G ') and loss modulus (G '') decreased, and the zero shear viscosity (eta(0)) decreased slightly with increasing temperature when measuring temperatures were lower than 160 degrees C. However, G ' and G '' increased at the end region of relaxation curves with increasing temperature and)10 increased with increasing temperature as the measuring temperatures were higher than 160 degrees C. Furthermore, critical crosslinked reaction temperature was detected at about 160 degrees C for sPB-830. The crosslinked reaction was not detected when test temperature was lower than 150 degrees C for measuring the dynamic mechanical properties of sample. The relationship between processing temperature and crosslinked reaction was proposed for the sPB-830 sample.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of two secondary effects, rotatory inertia and presence of a crack, on the dynamic plastic shear failure of a cantilever with an attached mass block at its tip subjected to impulsive loading is investigated. It is illustrated that the consideration of the rotatory inertia of the cantilever and the presence of a crack at the upper root of the beam both increase the initial kinetic energy of the block required to cause shear failure at the interface between the beam tip and the tip mass, where the initial velocity has discontinuity Therefore, the influence of these two secondary effects on the dynamic shear failure is not negligible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The motion of a single bubble rising freely in quiescent non-Newtonian viscous fluids was investigated experimentally and computationally. The non-Newtonian effects in the flow of viscous inelastic fluids are modeled by the Carreau theological model. An improved level set approach for computing the incompressible two-phase flow with deformable free interface is used. The control volume formulation with the SIMPLEC algorithm incorporated is used to solve the governing equations on a staggered Eulerian grid. The simulation results demonstrate that the algorithm is robust for shear-thinning liquids with large density (rho(1)/rho(g) up to 10(3)) and high viscosity (eta(1)/eta(g) up to 10(4)). The comparison of the experimental measurements of terminal bubble shape and velocity with the computational results is satisfactory. It is shown that the local change in viscosity around a bubble greatly depends on the bubble shape and the zero-shear viscosity of non-Newtonian shear-thinning liquids. The shear-rate distribution and velocity fields are used to elucidate the formation of a region of large viscosity at the rear of a bubble as a result of the rather stagnant flow behind the bubble. The numerical results provide the basis for further investigations, such as the numerical simulation of viscoelastic fluids. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Copolymers of linear low-density polyethylene (LLDPE) grafted with two novel nonionic surfactants, acrylic glycerol monostearate ester (AGMS) and acrylic polyoxyethylenesorbitan monooleate ester (ATW-EEN80), containing hydrophilic and hydrophobic groups and 1-olefin double bond were prepared by using a plasticorder at 190 degrees C. To evaluate the grafting degree, two different approaches based on H-1-NMR data were proposed, and FTIR calibration was showed to validate these methods. The rheological response of the molten polymers, determined under dynamic shear flow at small-amplitude oscillations, indicated that crosslinking formation of the chains could be decreased with increasing the monomer concentration. Their thermal behavior was studied by DSC and polarization microscope (PLM): The crystallization temperature (T-C) of grafted LLDPE shifted to higher temperature compared with neat LLDPE because the grafted chains acted as nucleating agents. Water and glycerol were used to calculate the surface free energy of grafted LLDPE films.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The melt rheological properties of binary uncompatibilized polypropylene -polyamide6 (PP-PA6) blends and ternary blends compatibilized with maleic anhydride-grafted PP (PP-PP-g-MAH-PA6) were studied using a capillary rheometer. The experimental shear viscosities of blends were compared with those calculated from Utracki's relation. The deviation value delta between these two series of data was obtained. In binary PP-PA6 blends, when the compatibility between PP and PA6 was poor, the deformation recovery of dispersed PA6 particles played the dominant role during the capillary flow, the experimental values were smaller than those calculated, and delta was negative. The higher the dispersed phase content, the more deformed the droplets were and the lower the apparent shear viscosity. Also, the absolute value of delta increased with the dispersed phase composition. In ternary PP-PP-g-MAH-PA6 systems, when the compatibility between PP and PA6 was enhanced by PP-g-MAH, the elongation and break-up of the dispersed particles played the dominant role, and the experimental values were higher than calculated. It was observed that the higher the dispersion of the PA6 phase, the higher the delta values of the ternary blends and the larger the positive deviation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using poly(styrene-co-maleic anhydride) as a backbone and poly(ethylene glycol) methyl ether (PEGME) with different molecular weights as side chains, three comb-like polymers and their Li salt complexes were synthesized. The dynamic mechanical properties and conductivities were investigated. Results showed that the polymer electrolytes possess two glass transitions: alpha -transition and beta -transition, and the temperature dependence of the ionic conductivity shows WLF (Williams-Landel-Ferry) behavior. Based on the time-temperature equivalence principle, a master curve was constructed by selecting T-beta as reference temperature. The values of the WLF parameters (C-1 and C-2) were obtained and were found to be almost independent of the length of the PEGME side chain and the content of Li salt. By reference to T-0 = 50 degreesC. the relation between log tau (c) and c was found to be linear. The master curves are displaced progressively to higher frequencies as the molecular weight of the side chain is increased. The relation between log tau (n) and the molecular weight of the side chain is also linear. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rheological properties of the novel engineering thermoplastic phenophthalein poly(ether ether ketone) (PEK-C) have been investigated using both a rotational and a capillary rheometer. The dependence of the viscosity on the shear rate and temperature was obtained. The activation energy was evaluated both from the Arrhenius and the Williams-Landel-Ferry (WLF) equation. An estimate for the proper E(eta) (dependent only on the chemical structure of the polymer) has been found from the WLF equation at temperatures about T-g + 200 degrees C. Measurements of the die swell have been performed. The first normal stress differences were evaluated from the die swell results and compared with the values obtained from the rotational rheometer at low shear rates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular dynamics simulations were used to study the pressure dependence of the structure and the dynamic properties of forsterite melt (Mg_2SiO_4), diopside melt (CaMgSi_2O_6), anorthite melt (CaAl_2Si_2O_8), jadite melt (NaAlSi_2O_6) and albite melt (NaAlSi3O8) from 0 GPa to 25 GPa at about 2000 K and the following conclusions have been reached. Firstly, the ratio of NBO to T (NBO and T denote the content of non-bridging oxygen and the total content of Si~(4+) and Al~(3+) respectively) is closely related to the pressure and the composition of the melts. It decreases monotonously in forsterite, diopside and anorthite melts while increases at the initial stage and then decreases in jadite and albite melts with increasing pressure. At a fixed pressure, the shear viscosity of the melts decreases with increasing NBO/T and the variation rate is almost 150 times higher in fully polymerized melts than that in de-polymerized melts in comparison with anorthite melts. Secondly, it is generally accepted that the formation of the Si and A1 will promote the diffusion of the network-forming ions. The hypothesis is frequently employed to explain the emergence of the maximum self-diffusion coefficient of the network-forming ions in fully polymerized melts. However, I detected that the pressure corresponding to the peak of the self-diffusion coefficient of the network-forming ions is lower than that corresponding to the maximum content of Si and A1, and that there exists an approximately linear relationship between the self-diffusion coefficient of the ions and the breaking frequency of the bonds under a given pressure, which is different from the present understanding about the mechanism of self-diffusion. Thirdly, the relationship between the self-diffusion coefficient of Si~(4+), Al~(3+) and O~(2-) and the shear viscosity of the melts evolves from the Stokes-Einstein equation and Sutherland-Einstein equation to the Eyring equation with increasing pressure. And the key to obtain self-diffusion coefficient from shear viscosity under difference pressures is to determine A. in the Eyring equation. For Si~(4+) and O~(2-), this could be done using the linear relationship between A, and NBO% in anorthite melts. However, this method is inapplicable in other kinds of melts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development and growth of microfluidics has stimulated interest in the behaviour of complex liquids in micro-scale geometries and provided a rich platform for rheometric investigations of non-Newtonian phenomena at small scales. Microfluidic techniques present the rheologist with new opportunities for material property measurement and this review discusses the use of microfluidic devices to measure bulk rheology in both shear and extensional flows. Capillary, stagnation and contraction flows are presented in this context and developments, limitations and future perspectives are examined. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The defect levels in Hg1-xCdxTe P+N junction photodiodes (x = 0.4) were first studied using deep-level transient spectroscopy. Two electron traps, E(1)(0.06) and E(2)(0.15), and two hole traps, H-1(0.075) and H-2(0.29), were obtained, Characteristic parameters-the minority lifetime of the devices and the dynamic resistance-area product at zero bias-are estimated according to these levels. Results show that these two minority levels may be important in controlling lifetime. We have studied the recombination mechanism of the hole trap H-2(0.29) further. It has a large activation energy and satisfies the formula sigma(T) = sigma(x) exp(-E(F)/E(T)). This reflects the fact that its recombination mechanism is multiphonon nonradiative recombination, which is rarely reported in narrow-bandgap materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a numerical study of shear viscosity and thermal conductivity of symmetric nuclear matter, pure neutron matter, and beta-stable nuclear matter, in the framework of the Brueckner theory. The calculation of in-medium cross sections and nucleon effective masses is performed with a consistent two- and three-body interaction. The investigation covers a wide baryon density range as needed in the applications to neutron stars. The results for the transport coefficients in beta-stable nuclear matter are used to make preliminary predictions on the damping time scales of nonradial modes in neutron stars.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using the copolymer of acrylonitrile (AN), methyl methacrylate (MMA), and poly(ethylene glycol) methyl ether methacrylate as a backbone and poly(ethylene glycol) methyl ether (PEGME) with 1100 molecular weight as side chains, comb-like gel polymers and their Li salt complexes were synthesized. The dynamic mechanical properties and conductivities were investigated. Results showed that the gel copolymer electrolytes possess two glass transitions: alpha-transition and beta-transition. Based on the time-temperature equivalence principle, a master curve was constructed by selecting T. as reference temperature. By reference to T-0 = 50 degrees C, the relation between log c, and c was found to be linear. The master curves are displaced progressively to higher frequencies as the content of plasticizer is increased. The relation between log tau(p) and the content of plasticizer is also linear.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nylon 11 (PA11)/clay nanocomposites have been prepared by melt-blending, followed by melt-extrusion through a capillary. Transmission electron n-Licroscopy shows that the exfoliated clay morphology is dominant for low nanofiller content, while the intercalated one is prevailing for high filler loading. Melt rheological properties of PA11 nanocomposites have been studied in both linear and nonlinear viscoelastic response regions. In the linear regime, the nanocomposites exhibit much higher storage modulus (G') and loss modulus (G") values than neat PAIL The values of G' and G" increase steadily with clay loading at low concentrations, while the G' and G" for the sample with 5 wt % clay show an inverse dependence and lie between the modulus values of the samples with 1 and 2 wt % of clay. This is attributed to the alignment/orientation of nanoclay platelets in the intercalated nanocomposite induced by capillary extrusion. In the nonlinear regime, the nanocomposites show increased shear viscosities when compared with the neat resin. The dependence of the shear viscosity on clay loading has analogous trend to that of G' and G".