36 resultados para Biology, Cell|Biology, Animal Physiology|Chemistry, Biochemistry|Health Sciences, Oncology
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The aim of this study was to determine the lowest concentration of nocodazole and colchicine to arrest blastomere division during the cleavage stage of loach embryos and to assess the reversibility and toxicity of the treatments in the treated embryos. Eight-cell loach embryos were incubated for 4, 8, 12, or 16 h in 1/10x Holtfreter supplemented with either nocodazole, an inhibitor of tubulin polymerization, or colchicine, an inhibitor of tubulin assembly. Complete arrest of cell cycle was observed, at a colchicine concentration of 0.996 mM and at a nocodazole concentration of 0.275 muM, respectively (the lowest effective concentration). No major morphological alteration in chromatin was observed. Reversibility and toxicity of both agents were dose and exposure period dependent. For both agents, prolonging cleavage arrest for more than 4 h (at the effective concentrations) is detrimental to development of embryos. Nocodazole treatment was less cytotoxic, whereas the concentrations of colchicine which induce cleavage arrest were detrimental to development beyond the blastula stage. Toxic effects beyond the blastula stage could be minimized for both agents by reducing the period of treatment and concentration.
Resumo:
The proliferating cell nuclear antigen gene was cloned from Fenneropenaeus chinensis (FcPCNA). The full-length cDNA sequence of FcPCNA encodes 260 amino acids showing high identity with PCNAs reported in other species. FcPCNA expressed especially high in proliferating tissues of shrimp such as haematopoietic tissue (HPT) and ovary. In order to understand the response of HPT to bacteria and virus challenge, mRNA level of FcPCNA in HPT was analyzed after shrimp were challenged by Vibrio anguillarum and white spot syndrome virus (WSSV). FcPCNA expression in HPT of shrimp was responsive to WSSV and Vibrio challenge, but different expression profiles were obtained after challenge by these two pathogens. The data provide additional information to understand the defense mechanisms of shrimp against virus and bacteria. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
Organisms living in water are inevitably exposed to periods of hypoxia. Environmental hypoxia has been an important stressor having manifold effects on aquatic life. Many fish species have evolved behavioral, physiological, biochemical and molecular adaptations that enable them to cope with hypoxia. However, the molecular mechanisms of hypoxia tolerance in fish, remain unknown. in this study, we used suppression subtractive hybridization to examine the differential gene expression in CAB cells (Carassius auratus blastulae embryonic cells) exposed to hypoxia for 24 h. We isolated 2100 clones and identified 211 differentially expressed genes (e-value <= 5e-3; Identity > 45%). Among the genes whose expression is modified in cells, a vast majority involved in metabolism, signal transduction, cell defense, angiogenesis, cell growth and proliferation. Twelve genes encoding for ERO1-L, p53, CPO, HO-1, MKP2, PFK-2, cystatin B, GLUT1, BTG1, TGF beta 1, PGAM1, hypothetical protein F1508, were selected and identified to be hypoxia-induced using semi-quantitive RT-PCR and real-time PCR. Among the identified genes, two open reading frames (ORFs) encoding for CaBTG1 and Cacystatin B were obtained. The deduced amino acid sequence of CaBTG1 had 94.1%, 72.8%, 72.8%, 72.8%, 68.6% identity with that of DrBTG1, HsBTG1, BtBTG1, MmBTG1 and XIBTG1. Comparison of Cacystatin B with known cystatin B, the molecules exhibited 49.5 to 76.0% identity overall. These results may provide significant information for further understanding of the adaptive mechanism by which C. auratus responds to hypoxia. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
For goldfish (Carassius auratus), there are many varieties with different eye phenotypes due to artificial selection and adaptive evolution. Dragon eye is a variant eye characterized by a large-size eyeball protruding out of the socket similar to the eye of dragon in Chinese legends. In this study, anatomical structure of the goldfish dragon eye was compared with that of the common eye, and a stretching of the retina was observed in the enlarged dragon eye. Moreover, the homeobox-containing transcription factor Six3 cDNAs were cloned from the two types of goldfish, and the expression patterns were analyzed in both normal eye and dragon eye goldfish. No amino acid sequence differences were observed between the two deduced peptides, and the expression pattern of Six3 protein in dragon eye is quite similar to common eye during embryogenesis, but from 2 days after hatching, ectopic Six3 expression began to occur in the dragon eye, especially in the outer nuclear layer cells. With eye development, more predominant Six3 distribution was detected in the outer nuclear layer cells of dragon eye than that of normal eye, and fewer cell-layers in outer nuclear layer were observed in dragon eye retina than in normal eye retina. The highlight of this study is that higher Six3 expression occurs in dragon eye goldfish than in normal eye goldfish during retinal development of larvae. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Follicle consists of an oocyte and a lot of surrounding follicular cells, and significant interactions exist between the oocyte and the somatic cells. In this study, a novel cDNA has been screened from a subtractive cDNA library between tail bud embryos and blastula embryos in the protogynous hermaphrodite orange-spotted grouper (Epinephelus coioides). Its full-length cDNA is 821 bp, and has an ORF of 414 by for encoding a peptide of 137 aa, which shows 38%, 37%, 33%, and 33% homology with 4 putative proteins screened from zebrafish (Danio rerio). Conserved domain search in NCBI reveals a single C2 domain existing in the C2 domain superfamily proteins, and has only 7 beta strands in comparison with 8 beta strands of C2 domains in other C2 domain superfamily proteins. Artificial sex reversal, RT-PCR analysis and Western blot detection demonstrated ovary-specific expression of the C2 domain factor, and therefore the novel gene was designated as E. coioides ovary-specific C2 domain factor, EcOC2 factor. Moreover, predominant expression of EcOC2 factor was further revealed in grouper mature ovary, and its strong immunofluorescence signals were located between granulosa cells and oocyte zona radiata in grouper mature follicles. The data indicate that the novel EcOC2 factor might be a main component that associates between granulosa cells and the oocyte during oocyte maturation, and might play significant roles in regulating oocyte maturation and ovulation. Further studies on its developmental behaviour and physiological functions will elucidate the interactions between oocyte and the surrounding somatic cells and the underlying molecular mechanisms. (C) 2005 Elsevier Inc. All rights reserved.
Resumo:
Spindlin has been suggested to play an important role during the transition from oocyte maturation to embryo development in mouse, but its homolog similar to the mouse Spindlin in molecular and expression characterization has not been identified up to now in other vertebrates. In this study, a full length of cDNA sequence is cloned and sequenced from the gibel carp (Carassius auratus gibelio). It contains 1240 nucleotides with an open reading frame of 771 nt encoding 257 amino acids. Based on its amino acid sequence alignment and comparison analysis with the known Spin family proteins, the newly cloned Spin is named Carassius auratus gibelio Spindlin (CagSpin). Its product could be detected from mature eggs to blastula embryos, but its content decreased from the two-cell stage, and could not be detected after the gastrula stage. It suggests that the CagSpin should be a maternal protein that is expressed during oocyte maturation, and plays a crucial role in early cleavage of embryogenesis. CagSpin is the first homolog similar to mouse spindlin identified in fish, and also in other vertebrates. GST pull-down assay reveals the first biochemical evidence for the association of CagSpin and p-tubulin, the microtubule component. Therefore, CagSpin may play important functions by interacting with beta-tubulin and other spindle proteins during oocyte maturation and egg fertilization. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
We tested the applicability of the random amplified polymorphic deoxyribonucleic acid (RAPD) analysis for identification of three marine fish cell lines FG. SPH, and RSBK and as a possible tool to detect cross-contamination. Sixth commercial 10-mer RAPD primers were tested on the cell lines and on samples collected from individual fish. The results obtained showed that the cell lines could be identified to the correspondent species on the basis of identical Patterns produced by 35-48% of the primers tested. the total mean similarity indices for cell lines versus correspondent species of individual fish ranged from 0.825 to 0.851. indicating the existence of genetic variation in these cell lines in relation to the species of their origin. Also, four primers, which gave a monomorphic hand pattern within species/line, but different among the species/line, were obtained. These primers can be useful for identification of these cell lines and for characterization of the genetic variation of these cell lines in relation to the species of their origin. This supported the use of RAPD analysis as an effective tool in species identification and cross-contamination test among different cell lines.
Resumo:
The influence of diet on lipid and fatty acid composition of the brine shrimp Artemia salina nauplii was investigated. Various diets with different lipid composition and fatty acid profiles were fed to nauplii for 2 weeks. The lipid composition of microalgal diets, Isochrysis galbana, Phaeodactylum tricornutum and Nannochloropsis oculata and baker's yeast was analyzed. Newly hatched nauplii were examined before the feeding experiment. It was shown that Artemia was able to incorporate and selectively concentrate some dietary lipids. Depot lipids were more sensitive to changes in the dietary lipid composition than the main structural lipids, polar lipids and sterols. Variations in the content of the lipid classes correlated with stage of development of the animal. The fatty acid composition of the animal varied with that of diet. The concentrations of saturated fatty acids were apparently supported in the nauplii by biosynthesis de novo. The acid 16:1(n-7) originated from the food. The concentration range of n-6 polyunsaturated fatty acids (PUFAs) remained constant through the accumulation from the diet. The proportion of n-3 PUFAs varied with their level in the diet. The dynamics of alteration of 20:5(n-3) content in Artemia fed on Isochrysis, which is poor in this acid, suggested a limited capacity for elongation and desaturation of 18:3(n-3) to 20:5(n-3). None of the diets provided dietary input of 22:6(n-3). (C) 1998 Elsevier Science Inc. All rights reserved.
Resumo:
Calreticulin (CRT), as an endoplasmic reticulum luminal resident protein, plays important roles in Ca2+ homeostasis and molecular chaperoning. CRT on the surface of the cell can modulate cell adhesion, phagocytosis and integrin-dependent Ca2+ signaling. The full length cDNA of calreticulin (FcCRT) was cloned from Chinese shrimp Fenneropenaeus chinensis. It consists of 1672 by with an open reading frame of 1221 bp, encoding 406 amino acids. This is the first reported cDNA sequence of calreticulin in Crustacea. The deduced amino acid sequence of FcCRT showed high identity with those of Bombyx mori (88%), Drosophila melanogaster (83%), Mus musculus (82%) and Homo sapiens (82%). Highest expression of FcCRT was detected in ovary by Northern blot and in situ hybridization. Different mRNA levels of FcCRT were detected at various molting stages. Expression of FcCRT was induced significantly after 3 h of heat shock treatment, reached the maximum at 4 h and dropped after that. Differential expression profiles of FcCRT were observed in hepatopancreas and haemocytes when shrimp were challenged by white spot syndrome virus (WSSV). From the above results, we inferred that FcCRT might play important roles in Ca2+ homeostasis, chaperoning and immune function in shrimp. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
Apostichopus japonicus is a common sea cucumber that undergoes seasonal inactivity phases and ceases feeding during the summer months. We used this sea cucumber species as a model in which to examine phenotypic plasticity of the digestive tract in response to food deprivation. We measured the body mass, gross gut morphology and digestive enzyme activities of A. japonicus before, during, and after the period of inactivity to examine the effects of food deprivation on the gut structure and function of this animal. Individuals were sampled semi-monthly from June to November (10 sampling intervals over 178 days) across temperature changes of more than 18 degrees C. On 5 September, which represented the peak of inactivity and lack of feeding, A. japonicus decreased its body mass, gut mass and gut length by 50%, 85%, and 70%, respectively, in comparison to values for these parameters preceding the inactive period. The activities of amylase, cellulase and lipase decreased by 77%, 98%, and 35% respectively, in comparison to mean values for these enzymes in June, whereas pepsin activity increased two-fold (luring the inactive phase. Alginase and trypsin activities were variable and did not change significantly across the 178-day experiment. With the exception of amylase and cellulase, all body size indices and digestive enzyme activities recovered and even surpassed the mean values preceding the inactive phase during the latter part of the experiment (October-November). Principal Component Analysis (PCA) utilizing the digestive enzyme activity and body size index data divided the physiological state of this cucumber into four phases: an active stage, prophase of inactivity peak inactivity, and a reversion phase. These phases are all consistent with previously suggested life stages for this species, but our data provide more defined characteristics of each phase. A. japonicus clearly exhibits phenotypic plasticity (or life-cycle staging) of the digestive tract during its annual inactive period. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Present in the excrement of humans and animals, 17 beta-estradiol (E-2) has been detected in the aquatic environment in a range from several nanograms to several hundred nanograms per liter. In this study, the sensitivities of rare minnows during different life stages to E-2 at environmentally relevant (5, 25, and 100 ng l(-1)) and high (1000 ng l(-1)) concentrations were compared using vitellogenin (VTG) and gonad development as biomarkers under semistatic conditions. After 21 days of exposure, VTG concentrations in whole-body homogenates were analyzed; the results indicated that the lowest observed effective concentration for VTG induction was 25 ng l(-1) E-2 in the adult stage, but 100 ng l(-1) E-2 in the larval and juvenile stages. After exposure in the early life stage, the larval and juvenile fish were transferred to clean water until gonad maturation. No significant difference in VTG induction was found between the exposure and control groups in the adults. However, a markedly increased proportion of females and appearance of hermaphrodism were observed in the juvenile-stage group exposed to 25 ng l(-1) E-2. These results showed that VTG induction in the adult stage is more sensitive than in larval and juvenile stages following exposure to E-2. The juvenile stage may be the critical period of gonad development. Sex ratio could be a sensitive biomarker indicating exposure to xenoestrogens in early-life-stage subchronic exposure tests. The results of this study provide useful information for selecting sensitive biomarkers properly in aquatic toxicology testing.
Resumo:
Anterior gradient 2 (Agr2) genes encode secretory proteins, and play significant roles in anterior-posterior patterning and tumor metastasis. Agr2 transcripts were shown to display quite diverse tissue distribution in different species, and little was known about the cellular localization of Agr2 proteins. In this study, we identified an Agr2 homologue from gibe[ carp (Carassius auratus gibelio), and revealed the expression patterns and cellular localization during embryogenesis and in adult tissues. The full-length cDNA of CagAgr2 is 803 nucleotides (nt) with an open reading frame of 510 nt encoding 169 amino acids. The Agr2 C-terminus matches to the class I PDZ-interacting motif, suggesting that it might be a PDZ-binding protein. During embryogenesis, CagAgr2 was found to be transcribed in the mucus-secreting hatching gland from tailbud stage and later in the pharynx region, swim bladder and pronephric duct as revealed by RT-PCR and whole mount in situ hybridization. In the adult fish, its transcription was predominantly confined to the kidney, and lower transcription levels were also found in the intestine, ovary and gills. To further localize the Agr2 protein, the anti-CagAgr2 polyclonal antibody was produced and used for immunofluorescence observation. In agreement with mRNA expression data, the Agr2 protein was localized in the pronephric duct of 3dph larvae. In adult fish, Agr2 protein expression is confined to the renal collecting system with asymmetric distribution along the apical-basolateral axis. The data provided suggestive evidence that fish Agr2 might be involved in differentiation and secretory functions of kidney epithelium. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Healthy crucian carp (Carassius auratus) were treated by intraperitoneal (i.p.) injection of crude cyanobacterial extracts at two doses, 50 and 200 mu g MC-LR equiv kg(-1) BW. High mortality (100%) was observed within 60 h post injection in the high-dose group. In the treated fish, activities of four plasma enzymes, alanine aminotransferase (ALT), alkaline phosphatase (ALP), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH), all showed substantial increases, with both dose and time-dependent effects. These increases of enzyme activity indicate severe impairment occurred in the liver of crucian carp over time. Plasma concentrations of energy-related biomolecules including glucose (GLU), cholesterol (CHO), triglyceride (TG), and total protein (TP) showed marked changes in the high-dose group, possibly a nutritional imbalance correlated with the liver injury caused by intraperitoneal exposure to crude cyanobacterial extracts.
Resumo:
Endogenous yolk nutrients are crucial for embryo and larval development in fish, but developmental behavior of the genes that control yolk utilization remains unknown. Apolipoproteins have been shown to play important roles in lipid transport and uptake through the circulation system. In this study, EcApoC-I, the first cloned ApoC-I in teleosts, has been screened from pituitary cDNA library of female orange-spotted grouper (Epinephelus coioides), and the deduced amino acid sequence shows 43.5% identity to one zebrafish (Danio rerio) hypothetical protein similar to ApoC-I, and 21.2%, 21.7%, 22.5%, 20%, and 22.5% identities to Apo C-I of human (Homo sapiens), house mouse (Mus musculus), common tree shrew (Tupaia glis), dog (Canis lupus familiaris) and hamadryas baboon (Papio hamadryas), respectively. Although the sequence identity is low, amphipathic alpha-helices with the potential to bind to lipid were predicted to exist in the EcApoC-I. RT-PCR analysis revealed that it was first transcribed in gastrula embryos and maintained a relatively stable expression level during the following embryogenesis. During embryonic and early larval development, a very high level of EcApoC-I expression was in the yolk syncytial layer, indicating that it plays a significant role in yolk degradation and transfers nutrition to the embryo and early larva. By the day 7 after hatching, EcApoC-I transcripts were observed in brain. In adult, EcApoC-I mRNA was detected abundantly in brain and gonad. In transitional gonads, the EcApoC-I expression is restricted to the germ cells. The data suggested that EcApoC-I might play an important role in brain and gonad morphogenesis and growth.