2 resultados para Biofilter

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiments on growth characters and ecological functions of the macroalgae Gracilaria lemaneiformis, collected from south China, were conducted in polyculture areas of kelp and filter-feeding bivalve in Sanggou Bay in Weihai City, Shandong, in north China from May 2002 to May 2003. The results of 116 days cultivation showed that the average wet weight of alga increased 89 times from 0.1 to 8.9 kg rope(-1), with an average specific growth rate ( based on wet weight) of 3.95% per day. The most favorable water layer for its growth was 1.0 - 1.8 m below the surface in July and August, with an average specific growth rate of 8.2% per day in 30-day experiments. Photosynthetic activity changed seasonally, with an average of 7.3 mg O-2 g dw(-1) h(-1). The maximum rate (14.4 mg O-2 g dw(-1) h(-1)) was recorded in July, or 19.3 mg CO2 g dw(-1) h(-1), while the minimum (0.40 mg CO2 g dw(-1) h(-1)) was in April. This study indicated that the culture of G. lemaneiformis is an effective way to improve water quality where scallops are cultivated intensively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In coastal ecosystems, suspension-cultured bivalve filter feeders may exert a strong impact on phytoplankton and other suspended particulate matter and induce strong pelagic-benthic coupling via intense filtering and biodeposition. We designed an in situ method to determine spatial variations in the filtering-biodeposition process by intensively suspension-cultured scallops Chlamys farreri in summer in a eutrophic bay (Sishili Bay, China), using cylindrical biodeposition traps directly suspended from longlines under ambient environmental conditions. Results showed that bivalve filtering-biodeposition could substantially enhance the deposition of total suspended material and the flux of C, N and P to the benthos, indicating that the suspended filter feeders could strongly enhance pelagic-benthic coupling and exert basin-scale impacts in the Sishili Bay ecosystem. The biodeposition rates of 1-yr-old scallops varied markedly among culture sites (33.8 to 133.0 mg dry material ind.(-1) d(-1)), and were positively correlated with seston concentrations. Mean C, N and P biodeposition rates were 4.00, 0.51, 0.11 mg ind.-1 d-1, respectively. The biodeposition rates of 2-yr-old scallops were almost double these values. Sedimentation rates at scallop culture sites averaged 2.46 times that at the reference site. Theoretically, the total water column of the bay could be filtered by the cultured scallops in 12 d, with daily seston removal amounting to 64%. This study indicated that filtering-biodeposition by suspension-cultured scallops could exert long-lasting top-down control on phytoplankton biomass and other suspended material in the Sishili Bay ecosystem. In coastal waters subject to anthropogenic N and P inputs, suspended bivalve aquaculture could be advantageous, not only economically, but also ecologically, by functioning as a biofilter and potentially mitigating eutrophication pressures. Compared with distribution-restricted wild bivalves, suspension-cultured bivalves in deeper coastal bays may be more efficient in processing seston on a basin scale.