19 resultados para Binary system
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Mixed liquid crystal formation has been studied in a new binary system comprising paranitroazobenzene derivatives, in which one component was a mesogen and the other was a non-mesogen. The mixtures were found to exhibit a monotropic nematic phase which was converted to an enantiotropic phase in specific ranges of temperature and concentration. The latent liquid crystal-isotropic transition temperature (LTP) of the non-mesogen was obtained by using the extrapolation method of the transition temperature-composition curve and the equal-G analysis method. The LTPs of the non-mesogen obtained by the above two methods showed good agreement with each other. The low-temperature transition of the mixtures detected by DSC was attributed to a change of the crystallite size.
Resumo:
The stability constants of M-L binary system and M-L-L' (M = La3+ similar to Yb3+, Y3+ and Ca2+; L= DL-malic aicd, L' = L-hydroxyproline) ternary system were determined by pH-(0)-tentiometric method under the simulating physiological condition(37 degrees C, I=0.15 mol/L NaCl). The complex species MpLqLr'H-s(abbr as pqrs) in the sytems were ascertained by program COMPLEX. The results show that there are three species(1101, 1100 and 1200) in M-L binary system and one species(1010) in M-L' binary system. In addition to the above four species, a new species, 1112 was found in the M-L-L' ternary system, which is the only species of mixed ligands. Rare earth ions form more stable complexes than calcium ion does and the stability differences between their complexes in the ternary system are less than that in the binary system. The distributions of all the species in La-L-L' ternary system vs pH are discussed.
Resumo:
研究了碱金属氟化物对掺Yb3+氟磷玻璃的光谱性质和析晶稳定性能的影响。运用倒易法计算了Yb3+的发射截面。结果显示,LiF的引入对吸收和发射截面的提高作用较大并出现最佳引入量极值,其次为KF。碱金属氟化物的引入可提高二元体系的析晶稳定性能,使玻璃网络结构得到改善;拉曼光谱显示二元体系中引入YbF3后玻璃网络结构得到增强,而在引入碱金属氟化物的三元体系中掺杂YbF3后破坏了网络完整性,降低系统析晶稳定性能。
Resumo:
The extraction of trivalent rare earths ( RE) from nitrate solutions with di-(2-ethylhexyl) 2-ethylhexyl phosphonate (DEHEHP, B) and synergistic extraction combined with 1-phenyl-3-methyl-4-benzoyl-pyrazolone-5 (HPMBP, HA) were investigated. The extraction distribution ratios demonstrate a distinct "tetra effect," and Y lies between Tb and Dy when DEHEHP is used as a single extractant for RE. According to the corresponding separation factors (SF12) for adjacent pairs of rare earths, it could be concluded that DEHEHP could be employed for the separation of La from the other rare earths, and Y from light rare earths. The present work has also found that mixtures of HPMBP and DEHEHP have an evident synergistic effect for RE(III). Taking Y( III) as an example, a possible synergistic extraction mechanism is proposed. The enhancement of extraction in the binary system can be explained due to the species Y(NO3) (.) A(2) (.) HA (.) B formed. The synergistic enhancement coefficients ( R), extraction constants, formation constants and thermodynamic functions of the reaction were calculated.
Resumo:
The cloud-point temperatures (T-cl's) of both binary poly(ethylene oxide) (PEO)-poly(ethylene oxide-b-dimethylsiloxane) [P(EO-b-DMS)] and ternary[toluene/PEO/P(EO-b-DMS)] systems were determined by light scattering measurements at atmospheric pressure. The phase separation behavior upon cooling in the ternary system has been investigated at atmospheric pressure and under high pressure and compared to the phase behavior in the binary system. The phase transition temperatures have been obtained for all of the samples. As a result, the pressure induces compatibility in the binary mixtures, but for the ternary system, pressure not only can induce mixing but also can induce phase separation.
Resumo:
This paper studies the radiation properties of the immiscible blend of nylon1010 and HIPS. The gel fraction increased with increasing radiation dose. The network was found mostly in nylon1010, the networks were also found in both nylon1010 and HIPS when the dose reaches 0.85 MGy or more. We used the Charleby-Pinner equation and the modified Zhang-Sun-Qian equation to simulate the relationship with the dose and the sol fraction. The latter equation fits well with these polymer blends and the relationship used by it showed better linearity than the one by the Charleby-Pinner equation. We also studied the conditions of formation of the network by the mathematical expectation theorem for the binary system. Thermal properties of polymer blend were observed by DSC curves. The crystallization temperature decreases with increasing dose because the cross-linking reaction inhibited the crystallization procession and destroyed the crystals. The melting temperature also reduced with increasing radiation dose. The dual melting peak gradually shifted to single peak and the high melting peak disappeared at high radiation dose. However, the radiation-induced crystallization was observed by the heat of fusion increasing at low radiation dose. On the other hand, the crystal will be damaged by radiation. A similar conclusion may be drawn by the DSC traces when the polymer blends were crystallized. When the radiation dose increases, the heat of fusion reduces dramatically and so does the heat of crystallization. (C) 1999 Elsevier Science Ltd. All rights reserved.
Synthesis, characterisation and catalytic activity of propionamide complexes of rare earth chlorides
Resumo:
Propionamide complexes of rare earth chlorides were synthesized, Formula of the complexes is LnCl(3). 3BA. The ligand is shown to behave as a normal amide donor With the oxygen of the carbonyl group coordinated to the metal ions. Binary system composed Elf propionamide and aluminum alkyl shows higher activity and stereospecificity for butadiene polymerization. The cis-1,4 content of polybutadiene is more than 98%.
Resumo:
Geological fluids are important components in the earth system. To study thephysical chemistry properties and the evolution of fluid system turns out to be one of the most challenging issues in geosciences. Besides the conventional experimental approaches and theoretical or semi-theoretical modeling, molecular level computer simulation(MLCS) emerges as an alternative tool to quantificationally study the physico-chemical properties of fluid under extreme conditions in order to find out the characteristics and interaction of geological fluids in and around earth. Based on our previous study of the intermolecular potential for pure H2O and thestrict evaluation of the competitive potential models for pure CH4 and the ab initio fitting potential surface across H2O-CH4 molecules in this study, we carried out more than two thousand molecular dynamics simulations for the PVTx properties of pure CH4 and the H2O-CH4 mixtures. Comparison of 1941 simulations with experimental PVT data for pure CH4 shows an average deviation of 0.96% and a maximum deviation of 2.82%. The comparison of the results of 519 simulations of the mixtures with the experimental measurements reveals that the PVTx properties of the H2O-CH4 mixtures generally agree with the extensive experimental data with an average deviation of 0.83% and 4% in maximum, which is equivalent to the experimental uncertainty. Moreover, the maximum deviation between the experimental data and the simulation results decreases to about 2% as temperature and pressure increase,indicating that the high accuracy of the simulation is well retained in the high temperature and pressure region. After the validation of the simulation method and the intermolecular potential models, we systematically simulated the PVTx properties of this binary system from 673 K and 0.05 GPa to 2573 K and 10 GPa. In order to integrate all the simulation results and the experimental data for the calculation of thermodynamic properties, an equation of state (EOS) is developed for the H2O-CH4 system covering 673 to 2573 K and 0.01 to 10 GPa. Isochores for compositions < 4 mol% CH4 up to 773 K and 600 MPa are also determined in this thesis.
Resumo:
Molar heat capacities of n-butanol and the azeotropic mixture in the binary system [water (x=0.716) plus n-butanol (x=0.284)] were measured with an adiabatic calorimeter in a temperature range from 78 to 320 K. The functions of the heat capacity with respect to thermodynamic temperature were established for the azeotropic mixture. A glass transition was observed at (111.9 +/- 1.1) K. The phase transitions took place at (179.26 +/- 0.77) and (269.69 +/- 0.14) K corresponding to the solid-liquid phase transitions of. n-butanol and water, respectively. The phase-transition enthalpy and entropy of water were calculated. A thermodynamic function of excess molar heat capacity with respect to temperature was established, which took account of physical mixing, destructions of self-association and cross-association for n-butanol and water, respectively. The thermodynamic functions and the excess thermodynamic ones of the binary systems relative to 298.15 K were derived based on the relationships of the thermodynamic functions and the function of the measured heat capacity and the calculated excess heat capacity with respect to temperature.
Resumo:
In order to realize super-resolution in the 4Pi-confocal systems, the annular binary pure phase filter is designed with the vector diffraction theory. The relations between the super-resolved parameters, such as S, G(T), G(A), and the radial position theta(i) of each zone, are obtained. For simple illumination of the design procedure, three-zone binary pure phase filters are studied, and several numerical simulation results show that in the 4Pi-confocal system with the properly designed binary pure phase filter the super-resolution can be realized with low sidelobes.
Resumo:
The kinetics of the polymerization of isoprene with the heterogeneous rare earth catalyst system isopropoxyneodymium dichloride/triethylaluminium (Nd(OPri)Cl-2-AlEt(3)) was examined in a specially designed dilatometer. The rate of polymerization is expressed as R(p) approximate to -d[M]/dt = k'(p)[Nd](1.40)[M]. The main kinetical parameters such as the concentration of active propagating chain, the efficiency of lanthanide catalyst used (ELCU), the absolute rate constant of propagation as well as the average life time of growing chains, were determined at 30 degrees C, 40 degrees C, 45 degrees C and 50 degrees C.
Resumo:
A series of binary borosilicate glasses prepared by the sol-gel method are shown to be bioactive. Tetraethyl orthosilicate (TEOS) and trimethylborate (TMB) in acidic medium are used to prepare xB(2)O(3)center dot(1-x)SiO2 glass systems for x = 0.045-0.167. The formation of a layer of apatite-like mineral on the glass surface becomes apparent after soaking in simulated body fluid for 48 h. We have measured the B-11-B-11 homonuclear second moments of the borosilicate glasses and inferred that no macroscopic phase separation occurred in our glasses. The B-11 chemical shift data also show that the formation of clustered boroxol rings is negligible in our glass system. Although the bioactivity of our borosilicate glasses is less than that of CaO-SiO2 sol-gel glasses, these simple binary systems could be taken as reference glass systems for the search of new bioactive borosilicate glasses. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This paper describes a 12-bit 300 MHz CMOS DAC for high-speed system applications. The proposed DAC consists of a unit current-cell matrix for 8 MSBs and a binary-weighted array for 4 LSBs. In order to ensure the linearity of DAC, a double Centro symmetric current matrix is designed by using the Q(2) random walk strategy. To minimize the feedthrough and improve the dynamic performance, the drain of the switching transistors is isolated from the output lines by adding two cascoded transistors.
Resumo:
The transient state (as the defined point where no enantioseparation is obtained in a dual chiral selector system) of chiral recognition of aminoglutethimide in a binary mixture of neutral cyclodextrins (CDs) was studied by capillary electrophoresis (CE). The following three dual selector systems were used: alpha-cyclodextrin (alpha-CD) and beta-cyclodextrin (beta-CD); alpha-CD and heptakis(di-O-methyl-beta-cyclodextrin) (DM-beta-CD); alpha-CD and heptakis(tri-O-methyl-beta-cyclodextrin) (TM-beta-CD). The S-(-) enantiomer of the analyte was more strongly retained in the presence of either alpha-CD or TM-beta-CD at pH 2.5, 100 mM phosphate buffer, while the R-(+) enantiomer was more strongly retained in the presence of either P-CD or DM-P-CD. In the more simple case, the elution order is invariably kept if the enantiomers have the same elution order in either one of the two hosts of the binary mixture. In contrast, the elution order may be switched by varying the concentration ratio of two hosts that produce opposite elution order for this particular analyte. In such a dual selector system, the enantioselectivity will disappear at the transient state at a certain ratio of host,:host, Moreover, the migration times of the two enantiomers with host, alone (diluted in buffer) is approximately equal to the migration times at the corresponding concentration of host, alone (diluted in buffer), where the ratio of concentrations of host,:host, is the same as in the binary mixture at the transient state. As found by nuclear magnetic resonance experiments, the analyte is forming a 1:1 complex with either one of the CDs applied. From this finding, a theoretical model based on the mobility difference of the two enantiomers was derived that was used to simulate the transient state. (C) 2000 Elsevier Science B.V. All rights reserved.