23 resultados para Bengal, Bay of
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
[1] The evolution of freshwater plumes and the associated salinity fronts in the northern Bay of Bengal ( henceforth the bay) is studied using rotated empirical orthogonal function (REOF) analysis and extended associate pattern analysis (EAPA). The results show that sea surface salinity distribution is featured by eastern-bay and western-bay plumes in the northern bay during different seasons. The western-bay plume begins in early July, peaks in late August, and then turns into a bay-shaped plume with the two plumes in either side of the bay, which peaks in late October. The southward extension of the western-bay plume can be explained by the southwestward geostrophic flow associated with the cyclonic gyre in the northern bay, which counters the northeastward Ekman drift driven by wind stress. The offshore expansion of the western-bay plume is induced by the offshore Ekman drift which also produces a salinity front near the east coast of India. The bay-shaped plume appears when the cyclonic gyre shifts westward and a weak anticyclonic gyre occupies the northeastern bay. As the season advances, the western part of the bay-shaped plume decays while the eastern part persists until the following June, which is believed to be associated with the anticyclonic gyre in the northern bay. The evolution of the plumes except the eastern part of the bay-shaped plume in fall can be partly explained by the seasonal variation of mass transport associated with the Sverdrup balance. The fact that the western-bay (eastern-bay) plume appears when surface freshwater flux in the northeastern bay increases ( decreases) dramatically suggests that the plumes are not produced directly by surface freshwater flux. River discharge seems to be the freshwater source for the plumes and has little to do with the evolution of the plumes.
Resumo:
Algal bloom phenomenon was defined as "the rapid growth of one or more phytoplankton species which leads to a rapid increase in the biomass of phytoplankton", yet most estimates of temporal coherence are based on yearly or monthly sampling frequencies and little is known of how synchrony varies among phytoplankton or of the causes of temporal coherence during spring algal bloom. In this study, data of chlorophyll a and related environmental parameters were weekly gathered at 15 sampling sites in Xiangxi Bay of Three-Gorges Reservoir (TGR, China) to evaluate patterns of temporal coherence for phytoplankton during spring bloom and test if spatial heterogeneity of nutrient and inorganic suspended particles within a single ecosystem influences synchrony of spring phytoplankton dynamics. There is a clear spatial and temporal variation in chlorophyll a across Xiangxi Bay. The degree of temporal coherence for chlorophyll a between pairs of sites located in Xiangxi Bay ranged from -0.367 to 0.952 with mean and median values of 0.349 and 0.321, respectively. Low levels of temporal coherence were often detected among the three stretches of the bay (Down reach, middle reach and upper reach), while high levels of temporal coherence were often found within the same reach of the bay. The relative difference of DIN between pair sites was the strong predictor of temporal coherence for chlorophyll a in down and middle reach of the bay, while the relative difference in Anorganic Suspended Solids was the important factor regulating temporal coherence in middle and upper reach. Contrary to many studies, these results illustrate that, in a small geographic area (a single reservoir bay of approximately 25 km), spatial heterogeneity influence synchrony of phytoplankton dynamics during spring bloom and local processes may override the effects of regional processes or dispersal.
Resumo:
A recurrent artificial neural network was used for 0-and 7-days-ahead forecasting of daily spring phytoplankton bloom dynamics in Xiangxi Bay of Three-Gorges Reservoir with meteorological, hydrological, and limnological parameters as input variables. Daily data from the depth of 0.5 m was used to train the model, and data from the depth of 2.0 m was used to validate the calibrated model. The trained model achieved reasonable accuracy in predicting the daily dynamics of chlorophyll a both in 0-and 7-days-ahead forecasting. In 0-day-ahead forecasting, the R-2 values of observed and predicted data were 0.85 for training and 0.89 for validating. In 7-days-ahead forecasting, the R-2 values of training and validating were 0.68 and 0.66, respectively. Sensitivity analysis indicated that most ecological relationships between chlorophyll a and input environmental variables in 0-and 7-days-ahead models were reasonable. In the 0-day model, Secchi depth, water temperature, and dissolved silicate were the most important factors influencing the daily dynamics of chlorophyll a. And in 7-days-ahead predicting model, chlorophyll a was sensitive to most environmental variables except water level, DO, and NH3N.
Resumo:
From July 2003 to June 2005, investigations of rotifer temporal and spatial distributions were carried out in a bay of the Three Gorges Reservoir, Xiangxi Bay, which is the downstream segment of the Xiangxi River and the nearest bay to the Three Gorges Reservoir dam in Hubei Province, China. Thirteen sampling sites were selected. The results revealed a high species diversity, with 76 species, and 14 dominant species; i.e., Polyarthra vulgaris, Keratella cochlearis, Keratella valga, Synchaeta tremula, Synchaeta stylata, Trichocerca lophoessa, Trichocerca pusilla, Brachionus angularis, Brachionus calyciflorus, Brachionus forficula forficula, Ascomorpha ovalis, Conochilus unicornis, Ploesoma truncatum and Anuraeopsis fissa. After the first year of the reservoir impoundment, the rotifer community was dominated by ten species; one year later it was dominated by eight species. The community in 2003/2004 was dissimilar to that in 2004/2005, which resulted from the succession of the dominant species. The rotifer community exhibited a patchy distribution, with significant heterogeneity observed along the longitudinal axis. All rotifer communities could be divided into three groups, corresponding to the riverine, the transition and the lacustrine zone, respectively.
Spring Diatom Blooming Phases in a Representative Eutrophic Bay of the Three-Gorges Reservoir, China
Resumo:
We investigated dynamics of the phytoplankton community and abiotic factors in Xiangxi Bay of the Three-Gorge Reservoir, China, by daily sampling, a specific site during a spring algal bloom (February 23-April 28, 2005). Among the 76 taxa observed, Asterionella formosa and Cyclotella spp. were the dominants, accounting for 47.2% and 29.9% of the total abundance, respectively. We determined the five distinct developing phases of the bloom by analyzing the dissimilarity of physicochemical parameters. Simultaneously, six phytoplankton community groups were distinguished by TWINSPAN classifications. The pattern for algal community succession was similar to that for the bloom phase shift, and the structural complexity of communities significantly decreased over time. Water temperature and silicate were the main factors that related to the development of the bloom and the shifts of the phytoplankton community.
Resumo:
Sedimentation variables and benthic community data were collected at seven stations during four seasons in Xiangxi Bay of the Three Gorges Reservoir, China. Summer, the season of highest discharge into the reservoir, was characterized by the extreme sediment loading. The benthic macroinvertebrate community was dominated by oligochaetes across all seasons at most stations. In winter/spring, macroinvertebrate density and richness increased. Correspondence analysis showed that community structure differed among stations at the two ends of the bay in winter and among almost all stations in spring, However, no variable associated with sedimentation appeared to be associated with differences in the community.
Resumo:
We investigated diel vertical migrations (DVM) and distributions of rotifers in summer, 2004 and spring, 2005, in Xiangxi Bay of the Three Gorges Reservoir, China. Water temperature, pH, conductivity, and phytoplankton were closely related to rotifer vertical distribution, while dissolved oxygen had no relationship with the vertical distribution of rotifers. The species composition and population density of rotifers changed significantly between seasons. However, rotifer vertical distributions in both seasons were similar. They aggregated at specific depths in the water column. All the rotifer species inhabited the surface layers (0.5-5 m). Generally, the rotifers did not display DVM except for Polyarthra vulgaris (in summer), which performed reverse migration. The reason that rotifers did not perform DVM may be explained by the low abundance of competitors and predators and the high density of food resources at the surface strata.
Resumo:
The spatial and temporal dynamics of physical variables, inorganic nutrients and phytoplankton chlorophyll a were investigated in Xiangxi Bay from 23 Feb. to 28 Apr. every six days, including one daily sampling site and one bidaily sampling site. The concentrations of nutrient variables showed ranges of 0.02-3.20 mg/L for dissolved silicate (Si); 0.06-2.40 mg/L for DIN (NH4N + NO2N + NO3N); 0.03-0.56 mg/L for PO4P and 0.22-193.37 mu g/L for chlorophyll a, respectively. The concentration of chlorophyll a and inorganic nutrients were interpolated using GIS techniques. The results indicated that the spring bloom was occurred twice in space during the whole monitoring period (The first one: 26 Feb.-23 Mar.; the second one: 23 Mar.-28 Apr.). The concentration of DIN was always high in the mouth of Xiangxi Bay, and PO4P was high in the upstream of Xiangxi Bay during the whole bloom period. Si seems no obvious difference in space in the beginning of the spring bloom, but showed high heterogeneity in space and time with the development of spring bloom. By comparing the interpolated maps of chlorophyll a and inorganic variables, obvious consumptions of Si and DIN were found when the bloom status was serious. However, no obvious depletion of PO4P was found. Spatial regression analysis could explained most variation of Chl-a except at the begin of the first and second bloom. The result indicated that Si was the factor limiting Chl-a in space before achieved the max area of hypertrophic in the first and second bloom period. When Si was obviously exhausted, DIN became the factor limiting the Chl-a in space. Daily and bidaily monitoring of Site A and B, representing for high DIN: PO4P ratio and low DIN:PO4P ratio, indicated that the concentration of Si was decreased with times at both site A and B, and the dramatically drop of DIN was found in the end monitoring at site B. Multiple stepwise regression analysis indicated that Si was the most important factor affect the development of spring bloom both at site A and B in time series.
Resumo:
We studied the daily dynamics of nutrients (total phosphorus [TP], total nitrogen [TN], and dissolved silicate [SiO2]) and chlorophyll a (chl a) during a spring bloom in Xiangxi Bay of the Three Gorges Reservoir in year 2005. According to the daily dynamics of chl a, the bloom occurred in two stages (23 February-25 March and 26 March-28 April). The concentration of SiO2 decreased at different layers of the water column with the development of the bloom. However, the decrease of SiO2 in the layers with high concentration of chl a was more dramatic than in the layers with low concentration of chl a. The concentration of TP was lowest value a few days after the peak of chl a during the first bloom period, and the lowest value of TN was found a few days after the peak of chl a during the second bloom period. Correlative analyses indicated that SiO2 and TP were limiting factors in the first bloom period, and SiO2 and TN were limiting factors in the second bloom period.
Resumo:
Suspended particulate matter (SPM), sediments and clams were collected at three sites in Jiaozhou Bay to assess the magnitude of trace metal pollution in the area. Metal concentrations in SPM (Cu: 40.11-203; Zn: 118-447; Pb: 50.1-132; Cd: 0.55-4.39; Cr: 147.6-288; Mn: 762-1670 mu g/g), sediments (Cu: 17.64-34.26; Zn: 80.79-110; Pb: 24.57-49.59; Cd: 0.099-0.324; Cr: 41.6-88.1; Mn: 343-520 mu g/g) and bivalves (Cu: 6.41-19.76; Zn: 35.5-85.5; Pb: 0.31-1.01; Cd: 0.51-0.67; Mn: 27.45-67.6 mu g/g) are comparable to those reported for other moderately polluted world environments. SPM showed a less clear pattern. Metal concentrations in sediments displayed a clear geographical trend with values increasing with proximity to major urban centers. The clams (on dry weight) showed a complex pattern due to the variability introduced by age-related factors. Cd showed an apparent reverse industrial trend with higher concentrations in clams collected at distant stations. Zn, Pb and Mn showed no clear geographical pattern, whereas Cu increased in the clams collected in the most industrialized area. In addition, the bioaccumulation factors (BAF) were calculated. The result indicated that the studied Ruditapes philippinarum in Jiaozhou Bay possessed different bioaccumulation capacities for Cd, Zn, Cu, Pb and Mn, and Cd, Zn had a relatively high assimilation of those metals from sediment particles. A significant relationship with clam age was observed for Zn (positive) and Cu (negative) suggesting different physiological requirements for both metals with age. Trace metal concentrations measured in the tissue of the investigated clam were in the range considered safe by the WHO for human use.
Resumo:
The spring-summer successions of phytoplankton and crustacean zooplankton were examined weekly in Meiliang Bay of the subtropical Lake Taihu in 2004 and 2005. During the study period, the ecosystem of Meiliang Bay was characterized by (i) clearly declined nitrogen compounds (nitrate, TN, and ammonium) and slowly increased phosphorus compounds (TP and SRP), (ii) increased total phytoplankton density and rapid replacement of chlorophyta (mainly Ulothrix) by cyanobacteria (mainly Microcystis), and (iii) rapid replacement of large-sized crustaceans (Daphnia and Moina) by small-sized ones (Bosmina, Limnoithona, and Ceriodaphnia). Results from the CCA and correlation analysis indicate that the spring-summer phytoplankton succession was primarily controlled by abiotic factors. Cyanobacteria were mainly promoted by increased temperature and decreased concentrations of nitrogen compounds. The pure contribution of crustacean was low for the variation of phytoplankton suggesting a weak top-down control by crustacean zooplankton in the subtropical Lake Taihu.
Resumo:
In an eight-month enclosure experiment in Meiliang Bay of Lake Taihu, a shallow subtropical lake in China, silver carp (Hypophthalmichthys molitrix) and bighead carp (Aristichthys nobilis) collectively reduced cyanobacterial biomass. Microcystin concentration was six times higher in the 0.35 km(2) control enclosure (without fish) than in two similar-sized enclosures that had been stocked with both carp species. Furthermore, toxic Microcystis spp. increased microcystin production when exposed to silver carp and bighead carp.
Resumo:
This paper reports the occurrence of a marine brachyuran crab species Eucrate alcocki SerSne, in SerSne et al., 1973, of the family Euryplacidae Stimpson, 1871, for first time from India, based on a male specimen from Parangipettai fish landing centre in Bay of Bengal, Southeast Coast of India. Although morphologically corresponding with what is currently defined as E. alcocki, the color pattern of the carapace of the present specimen is rather different from that of the Chinese material-only the anterior fifth of the carapace is marked with scattered red spots, the rest of the surface is yellowish, with four unusually shaped red blotches which almost look like Sanskrit characters.
Resumo:
Silver and bighead carp were stocked in a large pen to control the nuisance cyanobacterial blooms in Meiliang Bay of Lake Taihu. Plankton abundance and water quality were investigated about once a week from 9 May to 7 July in 2005. Biomass of both total crustacean zooplankton and cladocerans was significantly suppressed by the predation of pen-cultured fishes. There was a significant negative correlation between the N:P weight ratio and phytoplankton biomass. The size-selective predation by the two carps had no effect on the biomass of green alga Ulothrix sp. It may be attributed to the low fish stocking density (less than 40 g m(-3)) before June. When Microcystis dominated in the water of fish pen, the pen-cultured carps effectively suppressed the biomass of Microcystis, as indicated by the significant decline of chlorophyll a in the >38 mu m fractions of the fish pen. Based on the results of our experiment and previous other studies, we conclude that silver and bighead carp are two efficient biomanipulation tools to control cyanobacterial (Microcystis) blooms in the tropical/subtropical eutrophic waters. Moreover, we should maintain an enough stocking density for an effective control of phytoplankton biomass. (C) 2008 Elsevier B.V All rights reserved