75 resultados para Bed-bath

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper studies numerical modelling of near-wall two-phase flows induced by a normal shock wave moving at a constant speed, over a micronsized particles bed. In this two-fluid model, the possibility of particle trajectory intersection is considered and a full Lagrangian formulation of the dispersed phase is introduced. The finiteness of the Reynolds and Mach numbers of the flow around a particle as well as the fineness of the particle sizes are taken into account in describing the interactions between the carrier- and dispersed- phases. For the small mass-loading ratio case, the numerical simulation of flow structure of the two phases is implemented and the profiles of the particle number density are obtained under the constant-flux condition on the wall. The effects of the shock Mach number and the particle size and material density on particle entrainment motion are discussed in detail.The obtained results indicate that interphase non-equilibrium in the velocity and temperature is a common feature for this type of flows and a local particle accumulation zone may form near the envelope of the particle trajectory family.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pulsed liquid fluidized bed was studied using numerical simulation and experimental methods, The area-averaged two-fluid model (TFM) was used to simulate the pulsed fluidization. The bed expansion and collapse processes were simulated first and the phenomena obtained from the calculation were consistent with our previous experiments and observations. In the pulsed fluidization, the variation of bed height, the variations of particle velocity and concentration distribution were obtained and analyzed. Experiments were carried out to validate the simulation results. The pressure variation with time at different locations was measured using pressure transducers and compared with the simulated results. The variations of bed height and particle concentration distribution were recorded using a digital video camera recorder. The results were consistent with the simulation results as a whole.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

由于采用非均匀布风,内旋流流化床的移动区空气量不足,导致燃烧不充分,温度较低。当移动区未流化时,密相区内存在较明显的温度不均匀性。随着移动区流速的提高,温度差迅速减小。当移动区流速超过2.0#mu#m后,密相区温度基本均匀一致。流动区流速对密相区温度均匀有一定的影响,流速越高,温度越均匀。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An internally circulating fluidized bed (ICFB) was applied to investigate the behavior of chlorine and sulfur during cofiring RDF and coal. The pollutant emissions in the flue gas were measured by Fourier transform infrared (FTIR) spectrometry (Gasmet DX-3000). In the tests, the concentrations of the species CO, CO2, HCl, and SO2 were measured online. Results indicated when cofiring RDF and char, due to the higher content of chlorine in RDF, the formation of HCl significantly increases. The concentration of SO2 is relatively low because alkaline metal in the fuel ash can absorb SO2. The concentration of CO emission during firing pure RDF is relatively higher and fluctuates sharply. With the CaO addition, the sulfur absorption by calcium quickly increases, and the desulfuration ratio is bigger than the dechlorination ratio. The chemical equilibrium method is applied to predict the behavior of chlorine. Results show that gaseous HCl emission increases with increasing RDF fraction, and gaseous KCl and NaCl formation might occur.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An internally circulating fluidized bed (ICFB) was applied to investigate the behavior of chlorine and sulfur during cofiring RDF and coal. The pollutant emissions in the flue gas were measured by Fourier transform infrared (FTIR) spectrometry (Gasmet DX-3000). In the tests, the concentrations of the species CO, CO2, HCl, and SO2 were measured online. Results indicated when cofiring RDF and char, due to the higher content of chlorine in RDF, the formation of HCl significantly increases. The concentration Of SO2 is relatively low because alkaline metal in the fuel ash can absorb SO2. The concentration of CO emission during firing pure RDF is relatively higher and fluctuates sharply. With the CaO addition, the sulfur absorption by calcium quickly increases, and the desulfuration ratio is bigger than the dechlorination ratio. The chemical equilibrium method is applied to predict the behavior of chlorine. Results show that gaseous HCl emission increases with increasing RDF fraction, and gaseous KCl and NaCl formation might occur.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Successful applications of expanded bed adsorption (EBA) technology have been widely reported in the literature for protein purification. Little has been reported on the recovery of natural products and active components of Chinese herbal preparations using EBA technology. In this study, the hydrodynamic behavior in an expanded bed of cation resin, 001 x 7 Styrene-DVB, was investigated. Ephedrine hydrochloride (EH) was used as a model natural product to test the dynamic binding capacity (DBC) in the expanded bed. EBA of EH directly from a feedstock containing powdered herbs has also been investigated. These particles are different from commercially available expanded bed adsorbents by virtue of their large size (20S to 1030 gm). When the adsorbent bed is expanded to approximately 1.3 to 1.5 times its settled bed height, the axial liquid-phase dispersion coefficient was found to be of the order 10(-5) m(2) s(-1), which falls into the range 1.0 x 10(-6) to 1.0 X 10(-5) m(2) s(-1) observed previously in protein purification. Because of the favorable column efficiency (low axial dispersion coefficient), the recovery yield and purification factor values of EH directly from a feedstock reached 86.5% and 18, respectively. The results suggest that EBA technology holds promise for the recovery of natural products and active components of Chinese herbal preparations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coherence evolution and echo effect of an electron spin, which is coupled inhomogeneously to an interacting one-dimensional finite spin bath via hyperfine-type interaction, are studied using the adaptive time-dependent density-matrix renormalization group method. It is found that the interplay of the coupling inhomogeneity and the transverse intrabath interactions results in two qualitatively different coherence evolutions, namely, a coherence-preserving evolution characterized by periodic oscillation and a complete decoherence evolution. Correspondingly, the echo effects induced by an electron-spin flip at time tau exhibit stable recoherence pulse sequence for the periodic evolution and a single peak at root 2 tau for the decoherence evolution, respectively. With the diagonal intrabath interaction included, the specific feature of the periodic regime is kept, while the root 2 tau-type echo effect in the decoherence regime is significantly affected. To render the experimental verifications possible, the Hahn echo envelope as a function of tau is calculated, which eliminates the inhomogeneous broadening effect and serves for the identification of the different status of the dynamic coherence evolution, periodic versus decoherence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For an electron spin in coupling with an interacting spin chain via hyperfine-type interaction, we investigate the dynamical evolutions of the pairwise entanglement of the spin chain, and a correlation function joined the electron spin with a pair of chain spins in correspondence to the electron-spin coherence evolution. Both quantities manifest a periodic and a decaying evolution. The entanglement of the spin bath is significant in distinguishing the zero-coherence status exhibited in periodic and decoherence evolutions of the electron spin. The periodical concurrence evolution of the spin bath characterizes the whole system in a coherence-preserving phase, particularly for the case that the associated periodic coherence evolution is predominated by zero value in the infinite chain-length limit, which was often regarded as the realization of decoherence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A hierarchical equations of motion formalism for a quantum dissipation system in a grand canonical bath ensemble surrounding is constructed on the basis of the calculus-on-path-integral algorithm, together with the parametrization of arbitrary non-Markovian bath that satisfies fluctuation-dissipation theorem. The influence functionals for both the fermion or boson bath interaction are found to be of the same path integral expression as the canonical bath, assuming they all satisfy the Gaussian statistics. However, the equation of motion formalism is different due to the fluctuation-dissipation theories that are distinct and used explicitly. The implications of the present work to quantum transport through molecular wires and electron transfer in complex molecular systems are discussed. (c) 2007 American Institute of Physics.