3 resultados para Bearings

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The information preservation (IP) method and the direct simulation Monte Carlo (DSMC) method are used to simulate the gas flows between the write/read head and the platter of the disk drive (the slider bearing problem). The results of both methods are in good agreement with numerical solution of the Reynolds equation in the cases studied. However, the DSMC method owing to the problem of large sample size demand and the difficulty in regulating boundary conditions at the inlet and outlet was able to simulate only short bearings, while IP simulates the bearing of authentic length ~1000 m ? and can provide more detailed flow information.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gas film lubrication of a three-dimensional flat read-write head slider is calculated using the information preservation (IP) method and the direct simulation Monte Carlo (DSMC) method, respectively. The pressure distributions on the head slider surface at different velocities and flying heights obtained by the two methods are in excellent agreement. IP method is also employed to deal with head slider with three-dimensional complex configuration. The pressure distribution on the head slider surface and the net lifting force obtained by the IP method also agree well with those of DSMC method. Much less (of the order about 10(2) less) computational time (the sum of the time used to reach a steady stage and the time used in sampling process) is needed by the IP method than the DSMC method and such an advantage is more remarkable as the gas velocity decreases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As one part of national road No. 318, Sichuan-Tibet (Chengdu-Lasha) Highway is one of traffic life lines connecting Tibet municipality to the inland, which is very important to the economic development of Tibet. In addition, it is still an important national defence routeway, with extremely important strategic position on maintaining the stability and solidarity of Tibet municipality and consolidating national defence. Particular geological condition, terrain and landform condition and hydrometeorological condition induce large-scale debris flows and landslides (including landslips) and the like geological hazards frequently occur along the highway. High frequency geological hazards not only result in high casualties and a great property loss, but also block traffic at every turn, obstructing the Sichuan-Tibet highway seriously. On the basis of considerable engineering geological investigation and analysis to the relative studying achievements of predecessors, it is found that one of the dominating reason incurring landslides or debris flows again and again in a place is that abundant loose materials are accumulated in valleys and slopes along the highway. Taking landslides' and debris flows along Ranwu-Lulang section of Sichuan-Tibet highway as studying objects, the sources and cause of formation of loose accumulation materials in the studying area are analyzed in detail, the major hazard-inducing conditions, hazard, dynamic risk, prediction of susceptibility degree of landslides and debris flows, and the relations between landslides and debris flows and various hazard-inducing conditions are systematically researched in this paper. All of these will provide scientific foundation for the future highway renovating and reducing and preventing geological hazards. For the purpose of quantitatively analyzing landslide and debris flow hazards, the conception of entropy and information entropy are extended, the conception of geological hazard entropy is brought forward, and relevant mathematics model is built. Additionally, a new approach for the dynamic risk analysis of landslide and debris flow is put forward based on the dynamic characteristics of the hazard of hazard-inducings and the vulnerability of hazard-bearings. The formation of landslide and debris flow is a non-linear process, which is synthetically affected by various factors, and whose formation mechanics is extremely complex. Aiming at this question, a muli-factors classifying and overlapping technique is brought forward on the basis of engineering geomechanics meta-synthesis (EGMS) thought and approach, and relevant mathematics model is also built to predict the susceptibility degree of landslide or debris flow. The example analysis result proves the validity of this thought and approach. To studying the problem that whether the formation and space distribution of landslides and debris flows are controlled by one or several hazard-inducing conditions, the theme graphics of landslides and debris flows hazard and various hazard-inducing conditions are overlapped to determine the relationship between hazard and hazard-inducing conditions. On this basis, the semi-quantitative engineering zonation of the studying area is carried out. In addition, the overlapping analysis method of the hazard-indue ing conditions of landslides and debris flows based on "digital graphics system" is advanced to orderly organize and effectively manage the spatial and attributive data of hazard and hazard-inducing conditions theme graphics, and to realize the effectively combination of graphics, images and figures.