11 resultados para Bats.
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Rhinolophus (Rhinolophidae) is the second most speciose genus in Chiroptera and has extensively diversified diploid chromosome numbers (from 2n=28 to 62). In spite of many attempts to explore the karyotypic evolution of this genus, most studies have been
Resumo:
Bat flight poses intriguing questions about how flight independently developed in mammals. Flight is among the most energy-consuming activities. Thus, we deduced that changes in energy metabolism must be a primary factor in the origin of flight in bats. The respiratory chain of the mitochondrial produces 95% of the adenosine triphosphate (ATP) needed for locomotion. Because the respiratory chain has a dual genetic foundation, with genes encoded by both the mitochondrial and nuclear genomes, we examined both genomes to gain insights into the evolution of flight within mammals. Evidence for positive selection was detected in 23.08% of the mitochondrial-encoded and 4.90% of nuclear-encoded oxidative phosphorylation (OXPHOS) genes, but in only 2.25% of the nuclear-encoded nonrespiratory genes that function in mitochondria or 1.005% of other nuclear genes in bats. To address the caveat that the two available bat genomes are of only draft quality, we resequenced 77 OXPHOS genes from four species of bats. The analysis of the resequenced gene data are in agreement with our conclusion that a significantly higher proportion of genes involved in energy metabolism, compared with background genes, show evidence of adaptive evolution specific on the common ancestral bat lineage. Both mitochondrial and nuclear-encoded OXPHOS genes display evidence of adaptive evolution along the common ancestral branch of bats, supporting our hypothesis that genes involved in energy metabolism were targets of natural selection and allowed adaptation to the huge change in energy demand that were required during the origin of flight.
Resumo:
Rhodopsin, encoded by the gene Rhodopsin (RH1), is extremely sensitive to light, and is responsible for dim-light vision. Bats are nocturnal mammals that inhabit poor light environments. Megabats (Old-World fruit bats) generally have well-developed eyes, while microbats (insectivorous bats) have developed echolocation and in general their eyes were degraded, however, dramatic differences in the eyes, and their reliance on vision, exist in this group. In this study, we examined the rod opsin gene (RH1), and compared its evolution to that of two cone opsin genes (SWS1 and M/LWS). While phylogenetic reconstruction with the cone opsin genes SWS1 and M/LWS generated a species tree in accord with expectations, the RH1 gene tree united Pteropodidae (Old-World fruit bats) and Yangochiroptera, with very high bootstrap values, suggesting the possibility of convergent evolution. The hypothesis of convergent evolution was further supported when nonsynonymous sites or amino acid sequences were used to construct phylogenies. Reconstructed RH1 sequences at internal nodes of the bat species phylogeny showed that: (1) Old-World fruit bats share an amino acid change (S270G) with the tomb bat; (2) Miniopterus share two amino acid changes (V104I, M183L) with Rhinolophoidea; (3) the amino acid replacement I123V occurred independently on four branches, and the replacements L99M, L266V and I286V occurred each on two branches. The multiple parallel amino acid replacements that occurred in the evolution of bat RH1 suggest the possibility of multiple convergences of their ecological specialization (i.e., various photic environments) during adaptation for the nocturnal lifestyle, and suggest that further attention is needed on the study of the ecology and behavior of bats.
Resumo:
This work was supported by a grant from Key Disciplines of Zoology in Sowthwest Forestry University (XKX200903).
Resumo:
A new species of horseshoe bat (Chiroptera: Rhinolophidae) is described from southwestern China. The presence of a wedge-shaped sella and pointed connecting process of the nose leaf aligns the new species to the landeri group in the Afro-Palearctic lineag
Resumo:
Although the monophyly of Chiroptera is well supported by many independent studies, higher-level systematics, e.g. the monophyly of microbats, remains disputed by morphological and molecular studies. Chromosomal rearrangements, as one type of rare genomic changes, have become increasingly popular in phylogenetic studies as alternatives to molecular and other morphological characters. Here, the representatives of families Megadermatidae and Emballonuridae are studied by comparative chromosome painting for the first time. The results have been integrated into published comparative maps, providing an opportunity to assess genome-wide chromosomal homologies between the representatives of eight bat families. Our results further substantiate the wide occurrence of Robertsonian translocations in bats, with the possible involvement of whole-arm reciprocal translocations (WARTs). In order to search for valid cytogenetic signature(s) for each family and superfamily, evolutionary chromosomal rearrangements identified by chromosomal painting and/or banding comparison are subjected to two independent analyses: (1) a cladistic analysis using parsimony and (2) the mapping of these chromosomal changes onto the molecularly defined phylogenetic tree available fromthe literature. Both analyses clearly indicate the prevalence of homoplasic events that reduce the reliability of chromosomal characters for resolving interfamily relationships in bats.
Resumo:
Bats are a unique but enigmatic group of mammals and have a world-wide distribution. The phylogenetic relationships of extant bats are far from being resolved. Here, we investigated the karyotypic relationships of representative species from four families
Resumo:
Bats (Chiroptera) are the second-most abundant mammalian order in the world, occupying a diverse range of habitats and exhibiting many different life history traits. In order to contribute to this highly underrepresented group we describe the sleep architecture of two species of frugivorous bat, the greater short-nosed fruit bat (Cynopterus sphinx) and the lesser dawn fruit bat (Eonycteris spelaea). Electroencephalogram (EEG) and electromyogram (EMG) data were recorded from multiple individuals (>= 5) by telemetry over a 72-h period in a laboratory setting with light/dark cycles equivalent to those found in the wild. Our results show that over a 24-h period both species spent more time asleep than awake (mean 15 h), less than previous reported for Chiroptera (20 h). C sphinx spent significantly more of its non-rapid eye movement sleep (NREM) and rapid eye movement sleep (REM) quotas during the light phase, while E. spelaea divided its sleep-wake architecture equally between both light and dark phases. Comparing the sleep patterns of the two species found that C. sphinx had significantly fewer NREM and REM episodes than E. spelaea but each episode lasted for a significantly longer period of time. Potential hypotheses to explain the differences in the sleep architecture of C. sphinx with E. spelaea, including risk of predation and social interaction are discussed. (C) 2010 Published by Elsevier B.V.
Resumo:
Bamboo bats are a group of small bats with unique skull and morphology. They roost inside hollow bamboo stems in tropical and subtropical Asia and the Ambon Islands (Moluccas). We examined 53 specimens of Tylonycteris from southern and southwestern China. Comparisons of skull and external characteristics, pelage color, shapes of thumbpads and footpads, and statistical analysis of cranial measurements revealed that specimens from Damenglong, Jinghong County, Xishuang-banna, Yunnan, are distinctly different from the other two species of Tylonycteris described so far. The Yunnan specimens are the smallest in size; have dark blackish brown pelage color; and have larger upper premolars, smaller first lower premolars, and longer C-M-3. They are sympatric with the previously described species. Here we review the genus Tylonycteri and describe a new species, Tylonycteris pygmaeus, from the Yunnan material.
Resumo:
对贵州5种蝙蝠科蝙蝠的部分线粒体细胞色素氧化酶亚基Ⅰ DNA序列进行了测定,并结合从Genbank获得的爪哇伏翼的相应序列,以Pteropus dasymallus,P.scapulatus,Rousettus aegyptiacus为外群,运用贝叶斯法(Bayesian),最大似然法(Maximum Likelihood,ML)分析了这6种蝙蝠科蝙蝠的分子系统进化关系.结果表明:在贝叶斯,ML树中,这6种蝙蝠科的蝙蝠可分为3个分支:亚洲长翼蝠是第1个独立出来的分支;白腹管鼻蝠是继亚洲长翼蝠之后第2个分离出来的分支;第3个分支又分为两支,一支由大鼠耳蝠和小鼠耳蝠组成,另一支由南蝠和爪哇伏翼组成,支持将这4种蝙蝠同归于蝙蝠亚科的结论,从一定程度上否定了鼠耳蝠属和管鼻蝠亚科之间的姐妹类群关系,也不支持将鼠耳属提升为亚科.
Resumo:
This thesis focuses on the study of the geomagnetic orientation and navigation of homing pigeon and migrating bats. Magnetic minerals, possibly the base of the “magnetoreceptors”, which can perceive the magnetic information from geomagnetic field, are studied using advanced mineral magnetic methods in combination of non-magnetic techniques. In addition, the mechanism of magnetite biomineralization in organism has been probed through the formation of ferritin under laboratory-controlled conditions. A series of magnetic measurements of selected pigeon samples found the biogenic magnetite particles. a significant rapid decay of SIRM5K in the interval of 5–20 K on both zero-field cooled and field cooled warming curves suggests the dominance of superparamagnetic particles in the samples. Additionally, we noted that the content of magnetite particles in the male and the female are different. It is also found that bats contain magnetite. The results of room temperature magnetic measurements of Rhinolophus ferrumequinum and Chaerophon plicatus samples indicates there are magnetite in the heads of bats. The concentration of magnetic materials in the brain is higher than that in the skull. The results of low temperature magnetic measurements in Nyctalus plancyi samples show that the head may contain a small quantity of magnetite particles. In order to study the magnetite biomineralizaiton, ferritin was reconstituted. The results of electron nanodiffraction patterns indicate that the dominant mineral phases in the reconstituted ferritin are ferrihydrite, which is similar to that in the native ferritin. The blocking temperature (TB) is near 20K. A series of magnetic hysteresis at low temperatures (3-21K) show the wasp-waisted hysteresis loop. This can be interpreted by either grain size effects (SP + SD) or different coercivities minerals.