8 resultados para Bathymetry

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

分析了分通道、距离选通、光电倍增管变增益、正交偏振等多种技术相结合的方法,用以改善机载激光测深系统中激光回波的动态范围。并研制了相应的变增益部件,开展了水池试验以及海上现场试验。试验结果表明,多种方法相结合的技术可对水底信号的动态范围进行有效压缩,满足机载测深系统对浅海测量的动态范围要求;但正交偏振技术对信号测量压缩的改善效果并不明显。报道了试验过程中出现的光电倍增管后脉冲对水深测量的影响。对动态范围压缩技术进一步研究提供了有价值的参考。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

机载海洋激光测深系统不仅要求精确测量激光从海表的入射点到海底目标点之间的距离,还要精确测定飞机到海表入射,点之间的距离,为水深数据的海浪校正而确定平均海平面以及波高。为此设计和研制了一高精度时间间隔测量器,该单元基于专用时间数字转换芯片开发,采用延迟线插入法技术,双通道工作,具有高时间分辨率(最高可达250ps)和高测量重复率的特性。给出硬件和软件设计方法以及单元的测试结果。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

针对研制的新型机载激光测深系统的海上飞行试验数据,进行预处理、信息提取、数据同步和坐标转换后,开展波浪改正研究.对海底高程的GPS高程信息无波浪改正、GPS高程信息改正飞机航高变化计算波浪和加速度信息改正飞机航高变化计算波浪三种技术进行了分析.数据处理结果表明,采用加速度信息改正飞机航高变化计算得到的波浪信息的方法,结果较好,可满足研制的机载激光测深系统的要求.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Zenisu deep-sea channel originates on the Izu-Ogasawara island arc, and disappears in the Shikoku Basin of the Philippine Sea. The geomorphology, sedimentary processes, and the development of the Zenisu deep-sea channel were investigated on the basis of swath bathymetry, side-scan sonar imagery, submersible observations, and seismic data. The deep-sea channel can be divided into three segments according to the downslope gradient and channel orientation. They are the Zenisu Canyon, the E-W fan channel, and the trough-axis channel. The sediment fill is characterized by turbidite and debrite deposition and blocky-hummocky avalanche deposits on the flanks of the Zenisu Ridge. In the Zenisu Canyon and the Zenisu deep-sea channel, sediment transport by turbidity currents generates sediment waves (dunes) observed during the Shinkai 6500 dive 371. The development of the Zenisu Canyon is controlled by a N-S shear fault, whereas the trough-axis channel is controlled by basin subsidence associated with the Zenisu Ridge. The E-W fan channel was probably affected by the E-W fault and the basement morphology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zenisu deep-sea channel originated from a volcanic arc region, Izu-Ogasawara Island Arc, and vanished in the Shikoku Basin of the Philippine Sea. According to the swath bathymetry, the deep-sea channel can be divided into three,segments. They are Zenisu canyon, E-W fan channel and trough-axis channel. A lot of volcanic detritus were deposited in the Zenisu Trough via the deep-sea channel because it originated from volcanic arc settings. On the basis of the swath bathymetry, submersible and seismic reflection data, the deposits are characterized by turbidite and debrite deposits as those in the other major deep-sea channels. Erosion or few sediments were observed in the Zenisu canyon, whereas a lot of turbidites and debrites occurred in the E-W channel and trough axis channel. Cold seep communities, active fault and fluid flow were discovered along the lower slope of the Zenisu Ridge. Vertical sedimentary sequences in the Zenisu Trough consist of the four post-rift sequence units of the Shikoku Basin, among which Units A and B are two turbidite units. The development of Zenisu canyon is controlled by the N-S shear fault, the E-W fan channel is related to the E-W shear fault, and the trough-axis channel is related to the subsidence of central basin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Offshore active faults, especially those in the deep sea, are very difficult to study because of the water and sedimentary cover. To characterize the nature and geometry of offshore active faults, a combination of methods must be employed. Generally, seismic profiling is used to map these faults, but often only fault-related folds rather than fracture planes are imaged. Multi-beam swath bathymetry provides information on the structure and growth history of a fault because movements of an active fault are reflected in the bottom morphology. Submersible and deep-tow surveys allow direct observations of deformations on the seafloor (including fracture zones and microstructures). In the deep sea, linearly aligned cold seep communities provide indirect evidence for active faults and the spatial migration of their activities. The Western Sagami Bay fault (WSBF) in the western Sagami Bay off central Japan is an active fault that has been studied in detail using the above methods. The bottom morphology, fractured breccias directly observed and photographed, seismic profiles, as well as distribution and migration of cold seep communities provide evidence for the nature and geometry of the fault. Focal mechanism solutions of selected earthquakes in the western Sagami Bay during the period from 1900 to 1995 show that the maximum compression trends NW-SE and the minimum stress axis strikes NE-SW, a stress pattern indicating a left-lateral strike-slip fault.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wave-number spectrum technique is proposed to retrieve coastal water depths by means of Synthetic Aperture Radar (SAR) image of waves. Based on the general dispersion relation of ocean waves, the wavelength changes of a surface wave over varying water depths can be derived from SAR. Approaching the analysis of SAR images of waves and using the general dispersion relation of ocean waves, this indirect technique of remote sensing bathymetry has been applied to a coastal region of Xiapu in Fujian Province, China. Results show that this technique is suitable for the coastal waters especially for the near-shore regions with variable water depths.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The South China Sea (SCS) is one of the largest marginal seas in the western Pacific, which is located at the junction of Eurasian plate, Pacific plate and Indian-Australian plate. It was formed by continent breakup and sea-floor spreading in Cenozoic. The complicated interaction among the three major plates made tectonic movement complex and geological phenomena very rich in this area. The SCS is an ideal place to study the formation and evolution of rifted continental margin and sea-floor spreading since it is old enough to have experienced the major stages of the basin evolution but still young enough to have preserved its original nature. As the demand for energy grows day by day in our country, the deep water region of the northern continental margin in the SCS has become a focus of oil and gas exploration because of its huge hydrocarbon potential. Therefore, to study the rifted continental margin of the SCS not only can improve our understanding of the formation and evolution processes of rifted continental margin, but also can provide theoretical support for hydrocarbon exploration in rifted continental margin. This dissertation mainly includes five topics as follows: (1) Various classic lithosphere stretching models are reviewed, and the continuous non-uniform stretching model is modified to make it suitable for the case where the extension of lithopheric mantle exceeds that of the crust. Then simple/pure shear flexural cantilever model is applied to model the basement geometries of SO49-18 profile in the northern continental margin of the SCS. By fitting the basements obtained by using 2DMove software with modeling results, it is found that the reasonable effective elastic thickness is less than 5km in this region. According to this result, it is assumed that there is weak lower crust in the northern continental margin in the SCS. (2) We research on the methods for stretching factor estimation based on various lithosphere stretching models, and apply the method based on multiple finite rifting model to estimate the stretching factors of several wells and profiles in the northern continental margin of the SCS. (3) We improve one-dimension strain rate inversion method with conjugate gradient method, and apply it to invert the strain rate of several wells in the northern continental margin of the SCS. Two-dimension strain rate forward modeling is carried out, and the modeling results show that effective elastic thickness is a key parameter to control basin’s geometry. (4) We simulate divergent upwelling mantle flow model using finite difference method, and apply this newly developed model to examine the formation mechanism of the northwest and central sub-basin in the SCS. (5) We inverse plate thickness and basal temperature of oceanic lithosphere using sea-floor ages and bathymetries of the North Pacific and the North Atlantic based on varied-parameters plate model, in which the heat conductivity, heat capacity and coefficient of thermal expansion depend on temperature or depth. A new empirical formula is put forward based the inversed parameters, which depicts the relation among sea-floor age, bathymetry and heat flow. Then various similar empirical formulae, including the newly developed one, are applied to examine the sea-floor spread issue in the SCS based on the heat flow and bathymetry data of the abyssal sub-basin.