11 resultados para Basal cell nevus syndrome

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effect of temperature and irradiance on growth and reproduction of Enteromorpha prolifera that bloomed offshore along the Qingdao coast in summer 2008, was studied. It was showed that E. prolifera propagated mainly asexually with specific growth rate (SGR) of 10.47 at 25A degrees C/40 mu mol m(-2)s(-1). Under this condition, gametes with two flagellate formed and released in 5 days. At the beginning of the development, the unicell gamete divided into two cells with heteropolarity, and then the apical cell developed into thalli primordial cells, whereas the basal cell developed into rhizoid primordial cells. In 8-day culture, the monoplast gamete developed into juvenile germling of 240 mu m in length. Unreleased gametes can develop directly within the alga body. E. prolifera could either reproduce through lateral branching or fragmenting except apomixis revealed by Microscopic observation. On aged tissue of E. prolifera, although the degraded pigments partially remained in faded algal filaments, numerous vegetative cells could still divide actively in the algal tissues.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

White spot syndrome virus (WSSV) is a major shrimp pathogen that has a widespread negative affect on shrimp production in Asia and the Americas. It is known that WSSV infects shrimp cells through viral attachment proteins (VAP) that bind with shrimp cell receptors. However, the identity of both WSSV VAP and shrimp cell receptors remains unclear. We used digoxigenin (DIG)labeled shrimp hemocyte and gill cell membranes to bind to WSSV proteins immobilized on nitrocellulose membranes, and 4 putative WSSV VAP (37 kDa, 39 kDa and 2 above 97 kDa) were identified. Mass spectrometric analysis identified the 37 kDa putative VAP as the product of WSSV gene VP281.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Marine sponge cell culture is a potential route for the sustainable production of sponge-derived bioproducts. Development of a basal culture medium is a prerequisite for the attachment, spreading, and growth of sponge cells in vitro. With the limited knowledge available on nutrient requirements for sponge cells, a series of statistical experimental designs has been employed to screen and optimize the critical nutrient components including inorganic salts (ferric ion, zinc ion, silicate, and NaCl), amino acids (glycine, glutamine, and aspartic acid), sugars (glucose, sorbitol, and sodium pyruvate), vitamin C, and mammalian cell medium (DMEM and RPMI 1640) using MTT assay in 96-well plates. The marine sponge Hymeniacidon perleve was used as a model system. Plackett-Burman design was used for the initial screening, which identified the significant factors of ferric ion, NaCl, and vitamin C. These three factors were selected for further optimization by Uniform Design and Response Surface Methodology (RSM), respectively. A basal medium was finally established, which supported an over 100% increase in viability of sponge cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

White spot syndrome virus (WSSV) is a major pathogen in shrimp aquaculture. VP28 is one of the most important envelope proteins of WSSV. In this study, a recombinant antibody library, as single-chain fragment variable (scFv) format, displayed on phage was constructed using mRNA from spleen cells of mice immunized with-full-length VP28 expressed in Escherichia coli. After several rounds of panning, six scFv antibodies specifically binding to the epitopes in the N-terminal, middle, and C-terminal regions of VP28, respectively, were isolated from the library. Using these scFv antibodies as tools, the epitopes in VP28 were located on the envelope of the virion by immuno-electron Microscopy, Neutralization assay with these antibodies in vitro suggested that these epitopes may not be the attachment site of WSSV to host cell receptor. This study provides a new way to investigate the structure and function of the envelope proteins of WSSV. (c) 2008 Published by Elsevier Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A fluorescent quantitative PCR (FQ-PCR) assay utilizing SYBR green I dye is described for quantitation of white spot syndrome virus (WSSV) particles isolated from infected crayfish, Cambarus clarkii. For this assay, a primer set was designed which amplifies, with high efficiency and specificity, a 129 bp target sequence within ORF167 of the WSSV genome. Conveniently, WSSV particles can be added into the FQ-PCR assay with a simple and convenient method to release its DNA. To establish the basis for an in vitro neutralization test, primary cultures of shrimp cells were challenged with WSSV that had been incubated with a polyclonal anti-WSSV serum or with control proteins. The number of WSSV particles released from the cells after these treatments were assayed by FQ-PCR. This test may serve as a method to screen monoclonal antibody pools or recombinant antibody pools for neutralizing activity prior to in vivo animal experiments. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A rhabdovirus was observed from the diseased turbot (Scophthalmus maximus L.) with lethal syndrome. In this study, a carp leucocyte (CLC) cell line was used to investigate the infection process and cell death mechanism occurring during the virus infection. Strong cytopathogenic effect (CPE) and the morphological changes, such as extreme chromatin condensation, nucleus fragmentation, and apoptotic body formation, were observed under fluorescence microscopy after DAPI staining in the infected CLC cells. Transmission electron microscopy analysis showed cell shrinkage, plasma membrane blebbing, cytoplasm vacuolization, chromatin condensation, nuclear breakdown and formation of discrete apoptotic bodies. The bullet-shaped nucleocapsids were measured and ranged in size from 110 to 150 nm in length and 40 to 60 nm in diameter. And therefore the virus is called Scophthalmus maximus rhabdovirus (SMRV). Agarose gel electrophoresis analysis of the DNA extracted from infected cells showed typical DNA ladder in the course of SMRV infection. Flow cytometry analysis of SMRV infected CLC cells detected apoptotic peak in the virus infected CLC cells. Virus titre analysis and electron microscopic observation revealed that the virus replication fastigium was earlier than that of the apoptosis occurrence. No apoptosis was observed in the CLC infected with UV-inactivated SMRV. All these supported that SMRV infected CLC cells undergo apoptosis and the virus replication is necessary for apoptosis induction of CLC cells. (C) 2004 Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A pathogenic virus (RGV), isolated from diseased pig frog Rana grylio with lethal syndrome, was investigated with regard to morphogenesis and cellular interactions in EPC cells, a cell Line from fish. Different stages of virus amplification, maturation and assembly were observed at nucleus, cytoplasm and cellular membranes. The matured virus particles, were not only distributed diffusely in nucleus, cytoplasm and cellular surface, but also aggregated as pseudocrystalline arrays in the cytoplasm. Virions were released by budding from the plasma membranes, or following cell lysis. Various types of cell damage, such as small vacuoles, spherical inclusions, and swollen and empty mitochondria, were also found. Some typical characteristics of RGV, such as the symmetrical shape of the virions, replication process involving both nuclear and cytoplasmic phases, budding release from cellular membrane and intracellular membrane, viromatrix and paracrystalline aggregation in cytoplasm, and its acute pathogenic effects, were observed to be similar to that of other iridoviruses. Therefore, the RGV appears to be a member of the Iridoviridae based on these studies. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

HS1 (haematopoietic lineage cell-specific gene protein 1), a prominent substrate of intracellular protein tyrosine kinases in haematopoietic cells, is implicated in the immune response to extracellular stimuli and in cell differentiation induced by cytokines. Although HS1 contains a 37-amino acid tandem repeat motif and a C-terminal Src homology 3 domain and is closely related to the cortical-actin-associated protein cortactin, it lacks the fourth repeat that has been shown to be essential for cortactin binding to filamentous actin (F-actin). In this study, we examined the possible role of HS1 in the regulation of the actin cytoskeleton. Immunofluorescent staining demonstrated that HS1 co-localizes in the cytoplasm of cells with actin-related protein (Arp) 2/3 complex, the primary component of the cellular machinery responsible for de novo actin assembly. Furthermore, recombinant HS1 binds directly to Arp2/3 complex with an equilibrium dissociation constant (K-d) of 880 nM. Although HS1 is a modest F-actin-binding protein with a Kd of 400 nM, it increases the rate of the actin assembly mediated by Arp2/3 complex, and promotes the formation of branched actin filaments induced by Arp2/3 complex and a constitutively activated peptide of N-WASP (neural Wiskott-Aldrich syndrome protein). Our data suggest that HS1, like cortactin, plays an important role in the modulation of actin assembly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The glass sponge Monorhaphis chuni (Porifera: Hexactinellida) forms the largest bio-silica structures on Earth; their giant basal spicules reach sizes of up to 3 m and diameters of 8.5 mm. Previously, it had been shown that the thickness growth proceeds by appositional layering of individual lamellae; however, the mechanism for the longitudinal growth remained unstudied. Now we show, that the surface of the spicules have towards the tip serrated relief structures that are consistent in size and form with the protrusions on the surface of the spicules. These protrusions fit into the collagen net that surrounds the spicules. The widths of the individual lamellae do not show a pronounced size tendency. The apical elongation of the spicule proceeds by piling up cone-like structural units formed from silica. As a support of the assumption that in the extracellular space silicatein(-like) molecules exist that associate with the external surface of the respective spicule immunogold electron microscopic analyses were performed. With the primmorph system from Suberites domuncula we show that silicatein(-like) molecules assemble as string- and net-like arrangements around the spicules. At their tips the silicatein(-like) molecules are initially stacked and at a later stay also organized into net-like structures. Silicatein(-like) molecules have been extracted from the giant basal spicule of Monorhaphis. Applying the SDS-PAGE technique it could be shown that silicatein molecules associate to dimers and trimers. Higher complexes (filaments) are formed from silicatein(-like) molecules, as can be visualized by electron microscopy (SEM). In the presence of ortho-silicate these filaments become covered with 30-60 nm long small rod-like/cuboid particles of silica. From these data we conclude that the apical elongation of the spicules of Monorhaphis proceeds by piling up cone-like silica structural units, whose synthesis is mediated by silicatein(-like) molecules. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The proliferating cell nuclear antigen gene was cloned from Fenneropenaeus chinensis (FcPCNA). The full-length cDNA sequence of FcPCNA encodes 260 amino acids showing high identity with PCNAs reported in other species. FcPCNA expressed especially high in proliferating tissues of shrimp such as haematopoietic tissue (HPT) and ovary. In order to understand the response of HPT to bacteria and virus challenge, mRNA level of FcPCNA in HPT was analyzed after shrimp were challenged by Vibrio anguillarum and white spot syndrome virus (WSSV). FcPCNA expression in HPT of shrimp was responsive to WSSV and Vibrio challenge, but different expression profiles were obtained after challenge by these two pathogens. The data provide additional information to understand the defense mechanisms of shrimp against virus and bacteria. (c) 2008 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nitric oxide synthase (NOS) activity in the haemocytes of shrimps Fenneropenaeus chinensis (Osbeck) and Marsupenaeus japonicus (Bate) was Studied after white spot syndrome virus (WSSV) infection to determine its characteristics in response to virus infection. First, the NOS activity in haemocytes of shrimps was determined by the means of NBT reduction and changes in cell conformation. And the variations of NOS activity in shrimps after challenge with WSSV intramuscularly were evaluated through the analysis Of L-citrulline and total nitrite/nitrate (both as NO derivates) concentrations. The result showed that NOS activity in the haemocytes of F chinensis increased slightly from 0 to 12 h postchallenge, indicated by the variations Of L-Citrulline (from 11.15 +/- 0.10 to 12.08 +/- 0.64 mu M) and total nitrite/nitrate concentrations (from 10.45 +/- 0.65 to 12.67 +/- 0.52 mu M). Then it decreased sharply till the end of the experiment (84 h postchallenge), the concentrations Of L-Citrulline and total nitrite/nitrate at 84 It were 1.58 +/- 0.24 and 2.69 +/- 0.70 mu M, respectively. The LPS-stimulated NOS activity kept constant during the experiment. However, in M. japonicus, the NOS activity kept increasing during the first 72 It postchallenge, the concentrations Of L-Citrulline and total nitrite/nitrate increased from 7.82 +/- 0.77 at 0 h to 10.79 +/- 0.50 mu M at 72 h, and from 8.98 +/- 0.43 at 0 h to 11.20 +/- 0.37 mu M at 72 h, respectively. Then it decreased till the end of the experiment (216 h postchallenge), and the concentrations of L-Citrulline and total nitrite/nitrate at 216 h were 5.66 +/- 0.27 and 4.68 +/- 0.16 mu M, respectively. More importantly, an apparent increase of I-PS-stimulated NOS activity was observed in M japonicus at 48 h postchallenge, which was about 4 times higher than that in the control group of health shrimps. In correspondence with the difference of NOS activity between the two species of shrimps, the Cumulative mortalities of the shrimps were also different. All shrimps of F. chinensis in the mortality experiment died in 66 h, much more quickly than M. japonicus, Whose accumulative mortality reached 100% after 240 h. Data here reported let us hypothesize that NOS activity in the haemocytes of shrimps F chinensis and M. japonicus responses to WSSV infection differently, and this might be one of the reasons for the different susceptibility of F chinensis and M. japonicus to WSSV infection. (c) 2005 Elsevier Inc. All rights reserved.