7 resultados para Banks (Oceanography)

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The distribution of vascular plant species richness along an altitudinal gradient and their relationships with environmental variables, including slope, aspect, bank (flooding) height, and river width of the Xiangxi River, Hubei Province, were examined. Total vascular plant species richness changed with elevation: it increased at lower elevations, reached a maximum in the midreaches and decreased thereafter. In particular, tree and herbaceous species richness were related to altitude. Correlation analysis (Kendall's tau) between species richness and environmental variables indicated that the change in species richness in the riparian zone was determined by riparian environmental factors and characteristics of regional vegetation distribution along the altitudinal gradient. The low species richness at lower elevations resulted from seasonal flooding and human activities - agriculture and fuel collection - and the higher. Species richness ill (he midreaches reflected transitional zones ill natural vegetation types that had had little disturbance. These results oil species distribution in the riparian community could he utilized as a reference for restoration efforts to improve water quality of the emerging reservoir resulting from the Three Gorges Hydroelectric Dam project.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ori-in of the radial sand ridges (RSRs) in the southern Yellow Sea has been a controversial problem since they were discovered in the early 1960s. To resolve the problem, two key questions need to be answered: (1) was the radial tidal current field in the RSR area generated by the submarine topography, or (2) did it exist before the RSRs occurred? In this study, the M-2 tide and tidal currents in the RSR area were simulated with a two-dimensional tidal model using a flat bottom and a shelving slope topography, the results being then compared with the field data. It is demonstrated that the radial tidal current field in the southern Yellow Sea is independent of bottom topography, and may thus be the controlling factor generating the RSRs. The radial tidal current field probably existed before the RSRs were formed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The response of near-surface current profiles to wind and random surface waves are studied based on the approach of Jenkins [1989. The use of a wave prediction model for driving a near surface current model. Dtsch. Hydrogr. Z. 42,134-149] and Tang et al. [2007. Observation and modeling of surface currents on the Grand Banks: a study of the wave effects on surface currents. J. Geophys. Res. 112, C10025, doi:10.1029/2006JC004028]. Analytic steady solutions are presented for wave-modified Ekman equations resulting from Stokes drift, wind input and wave dissipation for a depth-independent constant eddy viscosity coefficient and one that varies linearly with depth. The parameters involved in the solutions can be determined by the two-dimensional wavenumber spectrum of ocean waves, wind speed, the Coriolis parameter and the densities of air and water, and the solutions reduce to those of Lewis and Belcher [2004. Time-dependent, coupled, Ekman boundary layer solutions incorporating Stokes drift. Dyn. Atmos. Oceans. 37, 313-351] when only the effects of Stokes drift are included. As illustrative examples, for a fully developed wind-generated sea with different wind speeds, wave-modified current profiles are calculated and compared with the classical Ekman theory and Lewis and Belcher's [2004. Time-dependent, coupled, Ekman boundary layer solutions incorporating Stokes drift. Dyn. Atmos. Oceans 37, 313-351] modification by using the Donelan and Pierson [1987. Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry. J. Geophys. Res. 92, 4971-5029] wavenumber spectrum, the WAM wave model formulation for wind input energy to waves, and wave energy dissipation converted to currents. Illustrative examples for a fully developed sea and the comparisons between observations and the theoretical predictions demonstrate that the effects of the random surface waves on the classical Ekman current are important, as they change qualitatively the nature of the Ekman layer. But the effects of the wind input and wave dissipation on surface current are small, relative to the impact of the Stokes drift. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analysis of the water level and current data taken in Qiongzhou Strait in the South China Sea (SCS) over the last 37 years (1963 to 1999) was made to examine the characteristics of tidal waves and residual flow through the strait and their roles in the seasonal variation of the SCS circulation. The observations reveal that Qiongzhou Strait is an area where opposing tidal waves interact and a source of water transport to the Gulf of Beibu (Gulf of Tonkin), SCS. A year-round westward mean flow with a maximum speed of 10-40 cm s(-1) is found in Qiongzhou Strait. This accounts for water transport of 0.2-0.4 Sv and 0.1-0.2 Sv into the Gulf of Beibu in winter-spring and summer-autumn, respectively. The outflow from Qiongzhou Strait may cause up to 44% of the gulf water to be refreshed each season, suggesting that it has a significant impact on the seasonal circulation in the Gulf of Beibu. This finding is in contrast to our current understanding that the seasonal circulation patterns in the South China Sea are primarily driven by seasonal winds. Several numerical experiments were conducted to examine the physical mechanisms responsible for the formation of the westward mean flow in Qiongzhou Strait. The model provides a reasonable simulation of semidiurnal and diurnal tidal waves in the strait and the predicted residual flow generally agrees with the observed mean flow. An analysis of the momentum equations indicates that the strong westward flow is driven mainly by tidal rectification over variable bottom topography. Both observations and modeling suggest that the coastal physical processes associated with tidal rectification and buoyancy input must be taken into account when the mass balance of the SCS circulation is investigated, especially for the regional circulation in the Gulf of Beibu.