97 resultados para Backbone-cyclized Proteins Database

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

C1q is the first subcomponent of classical pathway in the complement system and a major link between innate and acquired immunities. The globular (gC1q) domain similar with C1q was also found in many non-complement C1q-domain-containing (C1qDC) proteins which have similar crystal structure to that of the multifunctional tumor necrosis factor (TNF) ligand family, and also have diverse functions. In this study, we identified a total of 52 independent gene sequences encoding C1q-domain-containing proteins through comprehensive searches of zebrafish genome, cDNA and EST databases. In comparison to 31 orthologous genes in human and different numbers in other species, a significant selective pressure was suggested during vertebrate evolution. Domain organization of C1q-domain-containing (C1qDC) proteins mainly includes a leading signal peptide, a collagen-like region of variable length, and a C-terminal C1q domain. There are 11 highly conserved residues within the C1q domain, among which 2 are invariant within the zebrafish gene set. A more extensive database searches also revealed homologous C1qDC proteins in other vertebrates, invertebrates and even bacterium, but no homologous sequences for encoding C1qDC proteins were found in many species that have a more recent evolutionary history with zebrafish. Therefore, further studies on C1q-domain-containing genes among different species will help us understand evolutionary mechanism of innate and acquired immunities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peptidoglycan recognition protein (PGRP) specifically binds to peptidoglycan and is considered to be one of the pattern recognition proteins in the innate immunity of insect and mammals. Using a database mining approach and RT-PCR, multiple peptidoglycan recognition protein (PGRP) like genes have been discovered in fish including zebrafish Danio rerio, Japanese pufferfish TakiFugu rubripes and spotted green pufferfish Tetraodon nigroviridis. They share the common features of those PGRPs in arthropod and mammals, by containing a conserved PGRP domain. Based on the predicted structures, the identified zebrafish PGRP homologs resemble short and long PGRP members in arthropod and mammals. The identified PGRP genes in T. nigroviridis and TakiFugu rubripes resemble the long PGRPs, and the short PGRP genes have not been found in T. nigroviridis and TakiFugu rubripes databases. Computer modelling of these molecules revealed the presence of three alpha-helices and five or six beta-strands in all fish PGRPs reported in the present study. The long PGRP in teleost fish have multiple alternatively spliced forms, and some of the identified spliced variants, e.g., tnPGRP-L3 and tnPGRP-L4 (in: Tetraodon nigroviridis), exhibited no characters present in the PGRP homologs domain. The coding regions of zfPGRP6 (zf: zebrafish), zfPGRP2-A, zfPGRP2-B and zfPGRP-L contain five exons and four introns; however, the other PGRP-like genes including zfPGRPSC1a, zfPGRPSC2, tnPGRP-L1-, tnPGRP-L2 and frPGRP-L (fr: Takifugu rubripes) contain four exons and three introns. In zebrafish, long and short PGRP genes identified are located in different chromosomes, and an unknown locus containing another long PGRP-like gene has also been found in zebrafish, demonstrating that multiple PGRP loci may be present in fish. In zebrafish, the constitutive expressions of zfPGRP-L, zfPGRP-6 and zfPGRP-SC during ontogeny from unfertilized eggs to larvae, in different organs of adult, and the inductive expression following stimulation by Flavobacterium columnare, were detected by real-time PCR, but the levels and patterns varied for different PGRP genes, implying that different short and long PGRPs may play different roles in innate immune response. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To gain an insight into the function of shrimp lymphoid organ at protein level, we analyzed the proteome of lymphoid organ in healthy Chinese shrimp Fenneropenaeus chinensis (F. chinensis) through two-dimensional gel electrophoresis (2-DE) based proteomic approach. A total of 95 spots representing 75 protein entries were identified by liquid chromatography tandem mass spectrometry (LC-MS/MS) with both online and in-house database. According to Gene Ontology (GO) annotation of biological process, the identified proteins were classified into 13 categories. Among them, approximately 36% of proteins related to cytoskeleton are noticeable. Then, a comparative proteomic approach was employed to investigate the differentially expressed proteins in lymphoid organ of Vibrio anguillarum-challenged F. chinensis. At 24 h post-injection (hpi), 17 differentially expressed protein spots were successfully identified, including 4 up-regulated protein spots (represent 4 proteins: cathepsin L protein similar to squid CG16901-PC, protein kinase C and protein similar to T-complex Chaperonin 5 CG8439-PA), and 13 down-regulated protein spots (represent 9 proteins: actin, beta-actin, cytoplasmic actin CyII, alpha tubulin, beta tubulin, protein similar to proteasome delta, vacuolar ATP synthase subunit B, elongation factor 2, carboxypeptidase B). These data may help us to understand the function of lymphoid organ and the molecular immune mechanism of shrimp responsive to pathogen infection. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One kind of surface modification method on silicon wafer was presented in this paper. A mixed silanes layer was used to modify silicon surface and rendered the surface medium hydrophobic. The mixed silanes layer contained two kinds of compounds, aminopropyltriethoxysilane (APTES) and methyltriethoxysilane (NITES). A few of APTES molecules in the layer was used to immobilize covalently human immunoglobulin G (IgG) on the silicon surface. The human IgG molecules immobilized covalently on the modified surface could retain their structures well and bind more antibody molecules than that on silicon surface modified with only APTES. This kind of surface modification method effectively improved the sensitivity of the biosensor with imaging ellipsometry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein-Chip as micro-assays for the determination of protein interaction, the analysis, the identification and the purification of proteins has large potential applications. The Optical Protein-Chip is able to detect the multi-interaction of proteins and multi-bio-activities of molecules directly and simultaneously with no labeling. The chip is a small matrix on solid substrate containing multi-micro-area prepared by microfabrication with photolithography or soft lithography for surface patterning, and processed with surface modification which includes the physical, chemical, and bio-chemical modifications, etc. The ligand immobilization, such as protein immobilization, especially the oriented immobilization with low steric hindrance and high bio-specific binding activity between ligand and receptor is used to form a sensing surface. Each area of the pattern is corresponding to only one bioactivity. The interval between the areas is non-bioactive and optically extinctive. The affinity between proteins is used to realize non-labeling microassays for the determination of protein identification and protein interaction. The sampling of the chip is non-disturbing, performed with imaging ellipsometry and image processing on a database of proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Validated by comparison with DNS, numerical database of turbulent channel flows is yielded by Large Eddy Simulation (LES). Three conventional techniques: uv quadrant 2, VITA and mu-level techniques for detecting turbulent bursts are applied to the identification of turbulent bursts. With a grouping parameter introduced by Bogard & Tiedemann (1986) or Luchik & Tiederman (1987), multiple ejections detected by these techniques which originate from a single burst can be grouped into a single-burst event. The results are compared with experimental results, showing that all techniques yield reasonable average burst period. However, uv quadrant 2 and mu-level are found to be superior to VITA in having large threshold-independent range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The molecular mechanics property is the foundation of many characters of proteins. Based on intramolecular hydrophobic force network, the representative family character underlying a protein’s mechanics property is described by a simple two-letter scheme. The tendency of a sequence to become a member of a protein family is scored according to this mathematical representation. Remote homologs of the WW-domain family could be easily designed using such a mechanistic signature of protein homology. Experimental validation showed that nearly all artificial homologs have the representative folding and bioactivity of their assigned family. Since the molecular mechanics property is the only consideration in this study, the results indicate its possible role in the generation of new members of a protein family during evolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamic properties of proteins have crucial roles in understanding protein function and molecular mechanism within cells. In this paper, we combined total internal reflection fluorescence microscopy with oblique illumination fluorescence microscopy to observe directly the movement and localization of membrane-anchored green fluorescence proteins in living cells. Total internal reflect illumination allowed the observation of proteins in the cell membrane of living cells since the penetrate depth could be adjusted to about 80 nm, and oblique illumination allowed the observation of proteins both in the cytoplasm and apical membrane, which made this combination a promising tool to investigate the dynamics of proteins through the whole cell. Not only individual protein molecule tracks have been analyzed quantitatively but also cumulative probability distribution function analysis of ensemble trajectories has been done to reveal the mobility of proteins. Finally, single particle tracking has acted as a compensation for single molecule tracking. All the results exhibited green fluorescence protein dynamics within cytoplasm, on the membrane and from cytoplasm to plasma membrane.