7 resultados para Babesia canis vogeli
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Forty chromosome-specific paint probes of the domestic dog (Canis familiaris, 2n = 78) were used to delineate conserved segments on metaphase chromosomes of the American mink (Mustela vison, 2n = 30) by fluorescence in situ hybridisation. Half of the 38 canine autosomal probes each painted one pair of homologous segments in a diploid mink metaphase, whereas the other 19 dog probes each painted from two to five pairs of discrete segments. In total, 38 canine autosomal paints highlighted 71 pairs of conserved segments in the mink. These painting results allow us to establish a complete comparative chromosome map between the American mink and domestic dog. This map demonstrates that extensive chromosome rearrangements differentiate the karyotypes of the dog and American mink. The 38 dog autosomes could be reconstructed from the 14 autosomes of the American mink through at least 47 fissions, 25 chromosome fusions, and six inversions. Furthermore, comparison of the current dog/mink map with the published human/dog map discloses 23 cryptic intrachromosomal rearrangements in 10 regions of conserved synteny in the human and American mink genomes and thus further refined the human/mink comparative genome map. Copyright (C) 2000 S. Karger AG, Basel.
Resumo:
Chromosome homologies between the Japanese raccoon dog (Nectereutes procyonoides viverrinus, 2n = 39 + 2-4 B chromosomes) and domestic dog (Canis familiaris, 2n = 78) have been established by hybridizing a complete set of canine paint probes onto high-res
Resumo:
There is no generally accepted picture of where, when, and how the domestic dog originated. Previous studies of mitochondrial DNA (mtDNA) have failed to establish the time and precise place of origin because of lack of phylogenetic resolution in the so fa
Resumo:
Endogenous yolk nutrients are crucial for embryo and larval development in fish, but developmental behavior of the genes that control yolk utilization remains unknown. Apolipoproteins have been shown to play important roles in lipid transport and uptake through the circulation system. In this study, EcApoC-I, the first cloned ApoC-I in teleosts, has been screened from pituitary cDNA library of female orange-spotted grouper (Epinephelus coioides), and the deduced amino acid sequence shows 43.5% identity to one zebrafish (Danio rerio) hypothetical protein similar to ApoC-I, and 21.2%, 21.7%, 22.5%, 20%, and 22.5% identities to Apo C-I of human (Homo sapiens), house mouse (Mus musculus), common tree shrew (Tupaia glis), dog (Canis lupus familiaris) and hamadryas baboon (Papio hamadryas), respectively. Although the sequence identity is low, amphipathic alpha-helices with the potential to bind to lipid were predicted to exist in the EcApoC-I. RT-PCR analysis revealed that it was first transcribed in gastrula embryos and maintained a relatively stable expression level during the following embryogenesis. During embryonic and early larval development, a very high level of EcApoC-I expression was in the yolk syncytial layer, indicating that it plays a significant role in yolk degradation and transfers nutrition to the embryo and early larva. By the day 7 after hatching, EcApoC-I transcripts were observed in brain. In adult, EcApoC-I mRNA was detected abundantly in brain and gonad. In transitional gonads, the EcApoC-I expression is restricted to the germ cells. The data suggested that EcApoC-I might play an important role in brain and gonad morphogenesis and growth.
Resumo:
本文采用几何形态测量的方法对产自和政地区的鬣狗科Hyaenictitherium, Ictitherium, Adcrocuta和旁鬣狗科Dinocrocuta的材料进行研究,分析了这4个属保存完好的头骨标本的侧面形态。与东非大草原现生食肉动物的头骨整体形态分布的比较和分析表明,和政的鼬鬣狗(Ictitherium)和鬣型鼬鬣狗(Hyaenictitherium)的头骨形状分布介于现生斑鬣狗(Crocuta crocuta)、犬科猎狗(Lycaon pictus)和金豺(Canis aureus)之间,为二者似豺生态形态的解释提供了几何形态测量证据。再者,上述两属化石鬣狗的形状分布与现生斑鬣狗的幼年个体形状重叠,表明现生斑鬣狗头骨的发育机制可能是在鼬鬣狗祖先类型的异速生长规律基础上的持续发育,进而演化出现有的粗壮形态。此外,巨鬣狗(Dinocrocuta)和副鬣狗(Adcrocuta)的头骨形状与现生的斑鬣狗在几何形态测量空间内有普遍重叠的现象,指示了这些异时出现的种类具有相似的生态形态,因而可能占据相近的生态位。结果还显示巨鬣狗和斑鬣狗的幼年个体形状相近,以及两者从幼年到成年发育的形状变化过程也具有相似的规律。因而,巨鬣狗和斑鬣狗之间的趋同演化不仅表现在成年头骨的粗壮程度上,而且在幼年发育模式中也存在平行演化现象。现生发育学与行为生态学已经证实,相对其他大型食肉动物,现生斑鬣狗发育粗壮头骨形态的机制不是以增速生长,而是以延长发育期来实现的。由此推断,巨鬣狗的发育期有可能和现生鬣狗相当(35个月),也可能由于具有相对粗壮和巨大的头骨形态,其发育期会延长些。当然,这个新解释仍需要更多的化石数据和发育研究来证实。