159 resultados para BLOOD-POOL AGENT

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four neutral gadolinium complexes of diethylenetriaminepentaacetic acid (DTPA)-bisamide derivatives have been synthesized and characterized. Their potential application as tissue-specific and low-osmolarity MRI contrast agents has been evaluated by in vitro and in vivo experiments. Their measured relaxivities in D2O, bovine serum albumin and human serum transferrin solutions showed favorable relaxation ability. In vivo studies have proven that Gd(DTPA-BDMA), Gd(DTPA-BIN), and Gd(cyclic-DTPA-1,2-pn) could be promising liver-specific MRI contrast agents and Gd(DTPA-BDMA), and Gd(cyclic-DTPA-1,2-pn) have favorable renal excretion capability. Among them, Gd(cyclic-DTPA-1,2-pn) is a more powerful hepatic contrast agent and Gd(DTPA-BIN) provides the stable imaging contrast for several hours. They also show a lower toxicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two research projects on pool boiling in microgravity have been conducted aboard the Chinese recoverable satellites. Ground-based experiments have also been performed both in normal gravity and in short-term microgravity in the Drop Tower Beijing. Steady boiling of R113 on thin platinum wires was studied with a temperature-controlled heating method, while quasi-steady boiling of FC-72 on a plane plate was investigated with an exponentially increasing heating voltage. In the first case, slight enhancement of heat transfer is observed in microgravity, while diminution is evident for high heat flux in the second one. Lateral motions of bubbles on the heaters are observed before their departure in microgravity. The surface oscillation of the merged bubbles due to lateral coalescence between adjacent bubbles drives it to detach from the heaters. The Marangoni effect on the bubble behavior is also discussed. The perspectives for a new project DEPA-SJ10, which has been planned to be flown aboard the Chinese recoverable satellite SJ-10 in the future, are also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell adhesion is crucial to many biological processes, such as inflammatory responses, tumor metastasis and thrombosis formation. Recently a commercial surface plasmon resonance (SPR)-based BIAcore biosensor has been extended to determine cell binding mediated by surface-bound biomolecular interactions. How such cell binding is quantitatively governed by kinetic rates and regulating factors, however, has been poorly understood. Here we developed a novel assay to determine the binding kinetics of surface-bound biomolecular interactions using a commercial BIAcore 3000 biosensor. Human red blood cells (RBCs) presenting blood group B antigen and CM5 chip bearing immobilized anti-B monoclonal antibody (mAb) were used to obtain the time courses of response unit, or sensorgrams, when flowing RBCs over the chip surface. A cellular kinetic model was proposed to correlate the sensorgrams with kinetic rates. Impacts of regulating factors, such as cell concentration, flow duration and rate, antibody-presenting level, as well as pH value and osmotic pressure of suspending medium were tested systematically, which imparted the confidence that the approach can be applied to kinetic measurements of cell adhesion mediated by surface-bound biomolecular interactions. These results provided a new insight into quantifying cell binding using a commercial SPR-based BIAcore biosensor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A temperature-controlled pool boiling (TCPB) device has been developed to study the bubble behavior and heat transfer in pool boiling phenomenon both in normal gravity and in microgravity. A thin platinum wire of 60 mu m in diameter and 30 mm in length is simultaneously used as heater and thermometer. The fluid is R113 at 0.1 MPa and subcooled by 26 degrees C nominally for all cases. Three modes of heat transfer, namely single-phase natural convection, nucleate boiling, and two-mode transition boiling, are observed in the experiment both in microgravity aboard the 22nd Chinese recoverable satellite and in normal gravity on the ground before and after the space flight. Dynamic behaviors of vapor bubbles observed in these experiments are reported and analyzed in the present paper. In the regime of fully developed nucleate boiling, the interface oscillation due to coalescence of adjacent tiny bubbles is the primary reason of the departure of bubbles in microgravity. On the contrary, in the discrete bubble regime, it's observed that there exist three critical bubble diameters in microgravity, dividing the whole range of the observed bubbles into four regimes. Firstly, tiny bubbles are continually forming and growing on the heating surface before departing slowly from the wire when their sizes exceed some value of the order of 10(-1) mm. The bigger bubbles with about several millimeters in diameter stay on the wire, oscillate along the wire, and coalesce with adjacent bubbles. The biggest bubble with diameter of the order of 10 mm, which was formed immediately after the onset of boiling, stays continuously

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A temperature-controlled pool boiling (TCPB) device was developed to perform pool boiling heat transfer studies at both normal gravity on Earth and microgravity in the drop tower Beijing and aboard a Chinese recovery satellite. Two platinum wires of 60 ?m in diameter were simultaneously used as heaters and thermometers. The lengths were 30 mm and 40 mm, respectively. The ends of wires were soldered with copper poles to provide low resistance paths for the electric current. The heater resistance, and thus the heater temperature, was kept constant by a feedback circuit similar to that used in constant-temperature hot-wire anemometry. The fluid was R113 at 0.1 Mpa and subcooled by 30 ?C nominally for all cases. The results of the experiments at normal gravity were presented. Four modes, namely single-phase convection, nucleate boiling, transition two-mode boiling, and film boiling were observed. A few data obtained from several preliminary experiments at microgravity in the drop tower Beijing were also presented. A slight increase of the heat flux was obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:


A temperature-controlled poolboiling (TCPB) device was developed to perform poolboiling heat transfer studies at both normal gravity and microgravity. A platinum wire of 60 μm in diameter and 30 mm in length was simultaneously used as heaters and thermometers. The heater resistance, and thus the heater temperature, was kept constant by a feedback circuit. The fluid was R113 at 0.1 Mpa and subcooled by 24 nominally for all cases. The results of the experiments at both normal gravity and microgravityin the Drop Tower Beijing were presented. Nucleate and two-mode transition boiling were observed. For nucleate boiling, the heat transfer was slightly enhanced, namely no more than 10% increase of the heat flux was obtained inmicrogravity, while the bubble pattern is dramatically altered by the variation of the acceleration. For two-mode transition boiling, about 20% decrease of the heat flux was obtained, although the part of film boiling was receded inmicrogravity. A scale analysis on the Marangoni convection surrounding bubble in the process of subcooled nucleate poolboiling was also presented. The characteristic velocity of the lateral motion and its observability were obtained approximately. The predictions consist with theexperimental observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two research projects on pool boiling in microgravity have been conducted aboard the Chinese recoverable satellites. Ground-based experiments have also been performed both in normal gravity and in short-term microgravity in the Drop Tower Beijing. Steady boiling of R113 on thin platinum wires was studied with a temperature-controlled heating method, while quasi-steady boiling of FC-72 on a plane plate was investigated with an exponentially increasing heating voltage. In the first case, slight enhancement of heat transfer is observed in microgravity, while diminution is evident for high heat flux in the second one. Lateral motions of bubbles on the heaters are observed before their departure in microgravity. The surface oscillation of the merged bubbles due to lateral coalescence between adjacent bubbles drives it to detach from the heaters. The Marangoni effect on the bubble behavior is also discussed. The perspectives for a new project DEPA-SJ10, which has been planned to be flown aboard the Chinese recoverable satellite SJ-10 in the future, are also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A space experiment on bubble behavior and heat transfer in subcooled pool boiling phenomenon has been performed utilizing the temperature-controlled pool boiling (TCPB) device both in normal gravity in the laboratory and in microgravity aboard the 22(nd) Chinese recoverable satellite. The fluid is R113 at 0.1 MPa and subcooled by 26 degrees C nominally. A thin platinum wire of 60 mu m in diameter and 30mm in length is simultaneously used as heater and thermometer. Only the lateral motion and the departure of discrete vapor bubbles in nucleate pool boiling are reported and analyzed in the present paper. A scale analysis on the Marangoni convection surrounding a bubble in the process of subcooled nucleate pool boiling leads to formulas of the characteristic velocity of the lateral motion and its observability. The predictions consist with the experimental observations. Considering the Marangoni effect, a new qualitative model is proposed to reveal the mechanism underlying the bubble departure processes and a quantitative agreement can also be acquired.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pool boiling of degassed FC-72 on a plane plate heater has been studied experimentally in microgravity. A quasi-steady heating method is adopted, in which the heating voltage is controlled to increase exponentially with time. Compared with terrestrial experiments, bubble behaviors are very different, and have direct effect on heat transfer. Small, primary bubbles attached on the surface seem to be able to suppress the activation of the cavities in the neighborhoods, resulting in a slow increase of the wall temperature with the heat flux. For the high subcooling, the coalesced bubble has a smooth surface and a small size. It is difficult to cover the whole heater surface, resulting in a special region of gradual transitional boiling in which nucleate boiling and local dry area can co-exist. No turning point corresponding to the transition from nucleate boiling to film boiling can be observed. On the contrary, the surface oscillation of the coalesced bubble at low subcooling may cause more activated nucleate sites, and then the surface temperature may keep constant or even fall down with the increasing heat flux. Furthermore, an abrupt transition to film boiling can also be observed. It is shown that heat transfer coefficient and CHF increase with the subcooling or pressure in microgravity, as observed in normal gravity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new set of experimental data of subcooled pool boiling on a thin wire in rnicrogravity aboard the 22nd Chinese recoverable satellite is reported in the present paper. The temperature-control led heating method is used. The results of the experiments in normal gravity before and after the flight experiment are also presented, and compared with those in microgravity. The working fluid is degassed R113 at 0.1 MPa and subcooled by 26 degrees C nominally. A thin platinum wire of 60 mu m in diameter and 30 mm in length is simultaneously used as heater and thermometer. It is found that the heat transfer of nucleate pool boiling is slightly enhanced in microgravity comparing with those in normal gravity. It is also found that the correlation of Lienhard and Dhir can predict the CHF with good agreement, although the range of the dimensionless radius is extended by three or more decades above the originally set limit. Three critical bubble diameters are observed in microgravity, which divide the observed vapor bubbles into four regimes with different sizes. Considering the Marangoni effect, a qualitative model is proposed to reveal the mechanism underlying the bubble departure processes, and a quantitative agreement can also be acquired.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A space experiment on bubble behavior and heat transfer in subcooled pool boiling phenomenon has been performed utilizing the temperature-controlled pool boiling (TCPB) device both in normal gravity in the laboratory and in microgravity aboard the 22(nd) Chinese recoverable satellite. The fluid is degassed R113 at 0.1 MPa and subcooled by 26 degrees C nominally. A thin platinum wire of 60 mu m in diameter and 30 mm in length is simultaneously used as heater and thermometer. Only the dynamics of the vapor bubbles, particularly the lateral motion and the departure of discrete vapor bubbles in nucleate pool boiling are reported and analyzed in the present paper. It's found that these distinct behaviors can be explained by the Marangoni convection in the liquid surrounding vapor bubbles. The origin of the Marangoni effect is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Researches on two-phase flow and pool boiling heat transfer in microgravity, which included groundbased tests, flight experiments, and theoretical analyses, were conducted in the National Microgravity Laboratory/CAS. A semi-theoretical Weber number model was proposed to predict the slug-to-annular flow transition of two-phase gas–liquid flows in microgravity, while the influence of the initial bubble size on the bubble-to-slug flow transition was investigated numerically using the Monte Carlo method. Two-phase flow pattern maps in microgravity were obtained in the experiments both aboard the Russian space station Mir and aboard IL-76 reduced gravity airplane. Mini-scale modeling was also used to simulate the behavior of microgravity two-phase flow on the ground. Pressure drops of two-phase flow in microgravity were also measured experimentally and correlated successfully based on its characteristics. Two space experiments on pool boiling phenomena in microgravity were performed aboard the Chinese recoverable satellites. Steady pool boiling of R113 on a thin wire with a temperature-controlled heating method was studied aboard RS-22, while quasi-steady pool boiling of FC-72 on a plate was studied aboard SJ-8. Ground-based experiments were also performed both in normal gravity and in short-term microgravity in the drop tower Beijing. Only slight enhancement of heat transfer was observed in the wire case, while enhancement in low heat flux and deterioration in high heat flux were observed in the plate case. Lateral motions of vapor bubbles were observed before their departure in microgravity. The relationship between bubble behavior and heat transfer on plate was analyzed. A semi-theoretical model was also proposed for predicting the bubble departure diameter during pool boiling on wires. The results obtained here are intended to become a powerful aid for further investigation in the present discipline and development of two-phase systems for space applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of alcohol solution on single human red blood Cells (RBCs) was investigated using near-infrared laser tweezers Raman spectroscopy (LTRS). In our system, a low-power diode laser at 785 nm was applied for the trapping of a living cell and the excitation of its Raman spectrum. Such a design could simultaneously reduce the photo-damage to the cell and suppress the interference from the fluorescence on the Raman signal. The denaturation process of single RBCs in 20% alcohol solution was investigated by detecting the time evolution of the Raman spectra at the single-cell level. The vitality of RBCs was characterized by the Raman band at 752 cm(-1), which corresponds to the porphyrin breathing mode. We found that the intensity of this band decreased by 34.1% over a period of 25 min after the administration of alcohol. In a further study of the dependence of denaturation on alcohol concentration, we discovered that the decrease in the intensity of the 752 cm(-1) band became more rapid and more prominent as the alcohol concentration increased. The present LTRS technique may have several potential applications in cell biology and medicine, including probing dynamic cellular processes at the single cell level and diagnosing cell disorders in real time. Copyright (c) 2005 John Wiley T Sons, Ltd.