367 resultados para BLOCK-COPOLYMER MICELLES
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
A biodegradable amphiphilic block copolymer, PEG-b-P(LA-co-MAC), was used to prepare spherical micelles consisting of a hydrophobic P(LA-co-MAC) core and a hydrophilic PEG shell. To improve their stability, the micelles were crosslinked by radical polymerization of the double bonds in the hydrophobic blocks. The crosslinked micelles had similar sizes and a narrow size distribution compared to their uncrosslinked precursor. The improved stability of the crosslinked micelles was confirmed by measurements of the CMC and a thermodynamic investigation. These micelles can internalize into Hela cells in vitro as demonstrated by inverted fluorescence microscopy and CLSM. These stabilized nanoscale micelles have potential use in biomedical applications such as drug delivery and disease diagnosis.
Resumo:
The morphology of a H-shaped block copolymer (poly(ethylene glycol) backbone and polystyrene branches (PS)(2)PEG(PS)(2)) in a thin film has been investigated. A peculiar square lamella that has a phase-separated microdomain at its surface is obtained after spin coating. The experimental temperature plays a critical role in the lamellar formation. The copolymer first self-assembles into square lamellar micelles with an incomplete crystalline core due to the crystallizability of PEG.
Resumo:
This paper describes the formation of fibril like aggregates from the self-assembly of block copolymer mixture (polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) and polystyrene-b-poly(acrylic acid) (PS-b-PAA)) via interpolymer hydrogen bonding in nonselective solvent. The hydrogen bonding between P4VP and PAA in chloroform leads to the formation of complex. When all the pyridine units in P4VP were all hydrogen bonded to acrylic acid in PAA, the formed complex is insoluble, resulting in the formation of spherical micellar aggregates and nanorods.
Resumo:
The formation of ring-shaped structures in an H-shaped block copolymer [a poly(ethylene glycol) backbone with polystyrene branches, i.e., (PS)(2)PEG(PS)(2)] thin film was investigated when it was annealed in saturated PEG-selective acetonitrile vapor. Our results clearly indicate that ring formation is determined by the initial morphology of the spin-coated film, the solvent vapor selectivity and the environmental temperature of the solvent-annealing process. Only the films with the initial core-shell cylindrical structure in strongly PEG-selective acetonitrile vapor could form the ring-shaped structures.
Resumo:
We have investigated the effect of Shear flow on the formation of rill.-shaped ABA triblock copolymer (P4VP(43)-b-PS260-b-P4VP(43)) micelles. The results reveal that Shear flow Plays an important role in the formation of the rings Both ring size and its, distribution are found to be dependent sensitively on the stirring rate. Sizable rings are more likely to be formed at moderate stirring rate, Interestingly, the ring formation mechanism is also dependent oil the Shear flow. Copolymers are likely to form rings via end-to-end cylinder connection at low stirring rates, whereas they tend to form rings via the pathway of the rod-sphere-vesicle-ring it high stirring rates.
Resumo:
For the films and powder of polymers containing conductive oligomer are usually obtained from solution, the choice of better solvents for the regular arrangement of oligomers is very important for the higher conductivity. Because of the poor solubility of the oligomers, it is difficult to study the arrangement directly in most common solvents, so, we synthesized a triblock copolymer, mPEG2k-aniline pentamer-mPEG2k, as the model to investigate the arrangement-solvent relationship. For the poor solubility of the AP block in common solvents, the copolymer self-assembled into spheric micelles in toluene and into lamellar crystals in water and THF. The crystallinity (X-c) and crystallization temperature (T-c) values of mPEG blocks in powders prepared from different solvents differed obviously, which may be the effect of different self-assembled structures. From the two-phase model of one-dimensional electron density correlation function of SAXS, the long period of copolymer prepared from THF was presumably equal to the long period of pure mPEG plus the chain length of AP, which demonstrates that the AP blocks arrange regularly in the noncrystalline regions.
Self-assembly morphology effects on the crystallization of semicrystalline block copolymer thin film
Resumo:
Self-assembly morphology effects on the crystalline behavior of asymmetric semicrystalline block copolymer polystyrene-block-poly(L-lactic acid) thin film were investigated. Firstly, a series of distinctive self-assembly aggregates, from spherical to ellipsoid and rhombic lamellar micelles (two different kinds of rhombic micelles, defined as rhomb 1 and rhomb 2) was prepared by means of promoting the solvent selectivity. Then, the effects of these self-assembly aggregates on crystallization at the early stage of film evolution were investigated by in situ hot stage atomic force microscopy. Heterogeneous nucleation initiated from the spherical micelles and dendrites with flat on crystals appeared with increasing temperature. At high temperature, protruding structures were observed due to the thickening of the flat-on crystals and finally more thermodynamically stable crystallization formed. Annealing the rhombic lamellar micelles resulted in different phenomena. Turtle-shell-like crystalline structure initiated from the periphery of the rhombic micelle 1 and spread over the whole film surface in the presence of mostly noncrystalline domain interior. Erosion and small hole appeared at the surface of the rhombic lamellar micelle 2; no crystallization like that in rhomb 1 occurred. It indicated that the chain-folding degree was different in these two micelles, which resulted in different annealing behaviors.
Resumo:
A novelty approach to self-assembling stereocomplex micelles by enantiomeric PLA-PEG block copolymers as a drug delivery carrier was described. The particles were encapsulated by enantiomeric PLA-PEG stereocomplex to form nanoscale micelles different from the microspheres or the single micelles by PLLA or PDLA in the reported literatures. First, the block copolymers of enantiomeric poly(L-lactide)-poly(ethylene-glycol) (PLLA-PEG) and poly(D-lactide)-poly(ethylene-glycol) (PDLA-PEG) were synthesized by the ring-opening polymerization of L-lactide and D-lactide in the presence of monomethoxy PEG, respectively. Second, the stereocomplex block copolymer micelles were obtained by the self-assembly of the equimolar mixtures of enantiomeric PLA-PEG copolymers in water. These micelles possessed partially the crystallized hydrophobic cores with the critical micelle concentrations (cmc) in the range of 0.8-4.8 mg/l and the mean hydrodynamic diameters ranging from 40 to 120 nm. The micelle sizes and cmc values obviously depended on the hydrophobic block PLA content in the copolymer.Compared with the single PLLA-PEG or PDLA PEG micelles, the cmc values of the stereocomplex micelles became lower and the sizes of the stereocomplex micelles formed smaller. And lastly, the stereocomplex micelles encapsulated with rifampin were tested for the controlled release application.
Resumo:
We report the multiple morphologies and their transformation of polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) in low-alkanol solvents. In order to improve the solubility of polystyrene block in alcohol solvents, the solution of block copolymer sample was treated at a higher temperature, and then the influence of rate of decreasing temperature on multiple morphologies (including spheres, rods, vesicles, porous vesicles, large compound vesicles, and large compound micelles) was observed. The transformation of spheres to rods, to tyre-shaped large compound micelles, and to sphere-shaped large compound micelles was also realized. The formation mechanisms of the multiple morphologies and their transformation are discussed briefly.
Resumo:
A combination of microcontact printing and block copolymer nanoreactors succeeded in fabricating arrays of silver nanoparticle aggregates. A complex solution of polystyrene-block-poly(4-vinylpyridine) micelles and silver salt was used as an ink to form thin films or droplets on polydimethylsiloxane stamp protrusions. After these complex aggregates were printed onto silicon substrates under controlled conditions, highly ordered arrays of disklike, dishlike, and dotlike complex aggregates were obtained. A Subsequent oxygen reactive ion etching treatment yielded arrays of silver nanoparticle aggregates.
Resumo:
Self-assembled behavior of rod-terminally tethered three-armed star-shaped coil block copolymer melts was studied by applying self-consistent-field lattice techniques in three-dimensional (3D) space. Similar to rod-coil diblock copolymers, five morphologies were observed, i.e., lamellar, perforated lamellar, gyroidlike, cylindrical and sphericallike structures, while the distribution of the morphologies in the phase diagram was dramatically changed with respect to that Of rod-coil diblock copolymers.
Resumo:
The phase behaviors of comblike block copolymer A(m+1)B(m)/homopolymer A mixtures are studied by using the random phase approximation method and real-space self-consistent field theory. From the spinodals of macrophase separation and microphase separation, we can find that the number of graft and the length of the homopolymer A have great effects on the phase behavior of the blend. For a given composition of comblike block copolymer, increasing the number of graft does not change the macrophase separation spinodal curve but decreases the microphase separation region. The addition of a small quantity of long-chain homopolymer A increases the microphase separation of comblike block copolymer/homopolymer A mixture.
Resumo:
Self-assembled behavior of T-shaped rod-coil block copolymer melts is studied by applying self-consistent-field lattice techniques in three-dimensional space. Compared with rod-coil diblock copolymers with the anchor point positioned at one end, the copolymers with the anchor point at the middle of the rod exhibit significantly different phase behaviors. When the rod volume fraction is low, the steric hindrance of the lateral coils prevents the rods stacking into strip or micelle as that in rod-coil diblock copolymers. The competition between interfacial energy and entropy results in the formation of lamellar structures and the increasing thickness of the lamellar layer with increasing rod volume fraction.
Resumo:
The diffusion of water in a phase-separated biodegradable poly(ester urethane) shape-memory polymer with poly(E-caprolactone) (PCL) as the soft segment was investigated using time-resolved FTIR-ATR. On the basis of the band fitting and water ordering in drawn films, the broad water band in the 3800-2800 cm(-1) region was decomposed into four bands located at 3620, 3510, 3400, and 3260 cm(-1), and the first two components at 3620 and 35 10 cm(-1) were assigned to the vibrations of antisymmetric and symmetric stretching of water hydrogen bonded with the C=O group of the soft segment. The other two were associated with water bonded to the urethane hard segments in the forms of N-H:O-H:O=C bridge hydrogen bond and double hydrogen bonds with two C=O groups, respectively. Furthermore, band fitting and two-dimensional correlation analyses revealed that in the diffusion process, water first diffuses into the continuous soft-rich PCL phase and then into the hard-rich urethane domains, forming double hydrogen bonds with two C=O groups prior to the bridge hydrogen bond in the form of N-H:O-H:O=C.
Resumo:
A folate-conjugated copolymer PEG-PLA-PLL/folate was synthesized and mixed with pure PEG-PLA-PLL and a fluorescent model drug mFITC to prepare folate-conjugated micelles. The distribution of micelles was studied on cancer-cell-bearing mice via frozen slicing. The results show that mFITC is successfully encapsulated into folate(+) and folate(-)micelles; PEG-PLA-PLL micelles the latter can be internalized by both HeLa and CHO cells without selectivity due to their cationic surface charges, while folate(+)micelles exhibit more preferential endocytosis by HeLa cells than by CHO cells. The folate(-)micelles showed retention in both organs and tumors. The folate(+)micelles are a promising active targeting drug delivery system for FR over-expressing cells and they accumulate in tumor beds.