86 resultados para BIS(IMINO)PYRIDYL IRON(II)

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first and second generation carbosilane dendrimers with silicon hydride terminated were synthesized, and then reacted with bis(imino)pyridyl containing allyl [4-CH2==CHCH2-2,6-(Pr2C6H3N)-Pr-i==CMe(C5H3N)MeC==N(2,6-'Pr2C6H3)], in the presence of H2PtCl6 as a hydrosilylation catalyst, to afford the first and second generation carbosilane supported ligands. Complexation reactions with FeCl(2)(.)4H(2)O give rise to iron-containing carbosilane dendrimers with FeCl2 moieties bound on the periphery. The metallodendrimers were used as catalyst precursors, activated with modified methylaluminoxane, for the polymerization of ethylene. In the case of low Al/Fe molar ratio, the metallodendrimers display much higher catalytic activity towards ethylene polymerization and produce much higher molecule weight polyethylenes than the corresponding single-nuclear complex under the same conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of 2,6-bis(imino)pyridyl iron and cobalt complexes bearing p-substituent [2,6-(ArN=CMe)(2)C5H3N]-MCl2 (Ar=2,6-Me2C6H3, 2,4,6-Me3C6H2, 2,6-Me-2-4-BrC6H2, 2,6-Me-2-4-ClC6H2, 2,4-Me-2-6-BrC6H2, 2,4-Me-(2)-6-ClC6H2, while M=Fe, Co) have been synthesized and investigated as catalysts for ethylene polymerization in the presence of modified methylaluminoxane as a cocatalyst. The electron effect and positions of the substitueni of pyridinebisimine ligands were observed to affect considerably catalyst activity and polymer property.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silica and Merrifield resin were used as carriers for the support of alpha-diimine nickel(II) precatalysts for ethylene polymerization. The alpha-diimine ligands containing allyl were modified by introducing the reactive Si-Cl end-group, allowing their immobilization via a direct reaction of the Si-Cl groups with the silanols on silica surface or the hydroxyls on the ethanolamine-modified Merrifield resin. The resulting supported alpha-diimine ligands were characterized by analytical and spectroscopic techniques (NMR and Fr-IR).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two novel salicylaldimine-based neutral nickel(II) complexes, [(2,6-iPr(2)C(6)H(3))NCH(2-ArC6H3O)]Ni(PPh3)Ph (6, Ar = 2-(OH)C6H4; 8, Ar = 2-OH-3-(2,6-iPr(2)C(6)H(3)NCH)C6H3), have been synthesized, and their structures have also been confirmed by X-ray crystallography, elemental analysis, and H-1 and C-13 NMR spectra. An important structural feature of the two complexes is the free hydroxyl group, which allows them to react with silica pretreated with trimethylaluminum under immobilization by the formation of a covalent bond between the neutral nickel(II) complex and the pretreated silica. As active single-component catalysts, the two complexes exhibited high catalytic activities up to 1.14 and 1.47 x 10(6) g PE/mol(Ni)center dot h for ethylene polymerization, respectively, and yielded branched polymers. Requiring no cocatalyst, the two supported catalysts also showed relatively high activities up to 4.0 x 10(5) g PE/mol(Ni)center dot h and produced polyethylenes with high weight-average molecular weights of up to 120 kg/mol and a moderate degree of branching (ca. 13-26 branches per 1000 carbon atoms).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of alpha-diimine nickel(II) complexes containing chloro-substituted ligands, [(Ar)N=C(C10H6)C=N(Ar)]NiBr2 (4a, Ar = 2,3-C6H3Cl2; 4b, Ar = 2,4-C6H3Cl2; 4c, Ar = 2,5-C6H3Cl2; 4d, Ar = 2,6-C6H3Cl2; 4e, Ar = 2,4,6-C6H2Cl3) and [(Ar)N=C(C10H6)C=N(Ar)](2)NiBr2 (5a, Ar = 2,3-C6H3Cl2; 5b, Ar = 2,4-C6H3Cl2; 5c, Ar = 2,5-C6H3Cl2), have been synthesized and investigated as precatalysts for ethylene polymerization. In the presence of modified methylaluminoxane (MMAO) as a cocatalyst, these complexes are highly effective catalysts for the oligomerization or polymerization of ethylene under mild conditions. The catalyst activity and the properties of the products were strongly affected by the aryl-substituents of the ligands used. Depending on the catalyst structure, it is possible to obtain the products ranging from linear alpha-olefins to high-molecular weight polyethylenes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hydrothermal reactions of metavanadate and divalent iron salts in the presence of nitrogen-donor chelating ligands yield the complex [Fe(C10H8N2)(3)](2)[V4O12].10H(2)O, which consists of one centrosymmetric eight-membered ring [V4O12](4-) anion cluster, formed by four VO4 tetrahedra sharing vertices, two discrete octahedral [Fe(C10H8N2)(3)](2+) cations, formed by three 2,2'-bipyridyl ligands coordinated to Fe-II, and ten water molecules of solvation. The anion and coordination cations are isolated and form anion and cation layers, respectively. In the anion layers, these anions and water molecules of solvation are linked to each other, in a two-dimensional motif, through hydrogen-bonding interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A dicyano-bis(1,10-phenanthroline)iron(II) modified elecrode was prepared. The voltammetric and the spectroelectrochemical behavior of this electrode were investigated. The influence of pH and the amount of Nafion and dicyano-bis(1,10-phenanthroline) iron(II) (DBPI) used in the electrode preparation on the electrochemical behavior is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrochemical behaviour of hexacyanoferrate(II) has been studied by using a bis(4-pyridyl)disulfide modified gold electrode. On the protonated electrode surface, hexacyanoferrate(II) can transfer an electron reversibly but no apparent adsorption was detected. On the deprotonated electrode surface, electron transfer by hexacyanoferrate(II) was more difficult. The electrochemical reversibility varied with the pH of the solution. Relationships between the currents or the standard heterogeneous rate constants and pH were derived.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fe(II) pyridinebisimine complexes activated with trialkylaluminium or modified methylaluminoxane (MMAO) as catalysts were employed for the polymerization of methyl methacrylate. Polymer yields, activities and polymer molecular weights as well as molecular weight distributions can be controlled over a wide range by the variation of the structures of the Fe(II) pyridinebisimine complexes and the reaction parameters such as Al/Fe molar ratio, monomer/catalyst molar ratio, monomer concentration, reaction temperature and time applied to the polymerization of methyl methacrylate. Under optimum condition, the catalytic activity of Fe(II) complex is of up to 74.5 kg(polym)/mol(Fe)h.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A surface-renewable tris (1,10-phenanthroline-5, 6-dione) iron (II) hexafluorophosphate (FePD) modified carbon ceramic electrode was constructed by dispersing FePD and graphite powder in methyltrimethoxysilane (MTMOS) based gels. The FePD-modified electrode presented pH dependent voltammetric behavior, and its peak currents were diffusion-controlled in 0.1 mol/L Na2SO4 + H2SO4 solution (pH = 0. 4). In the, presence of iodate, clear electrocatalytic reduction waves were observed and thus the chemically modified electrode was used as an amperometric sensor for iodate in common salt. The linear range, sensitivity, detection limit and response time of the iodate sensor were 5 x 10(-6)-1 x 10(-2) mol/L, 7.448 muA.L/mmol, 1.2 x 10(-6) mol/L and 5 s, respectively. A distinct advantage of this sensor is its good reproducibility of surface-renewal by simple mechanical polishing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Iron(II)-8-quinolino/MCM-41 is prepared. Its catalysis is studied in phenol hydroxylation using H2O2 (30%) as oxidant. The experiment shows that Iron(II)-8-quinolinol/MCM-41 has good catalytic activity and desired stability. Based on cyclic voltammetry, ESR, and UV-visible spectra studies of iron(II)-8-quinolinol complex in liquid phase, a radical substitution mechanism is proposed and used to demonstrate the experimental facts clearly. (C) 1997 Academic Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phenol hydroxylation catalyzed by iron(II)-1,10-phenanthroline is investigated through kinetics, ESR, W-Vis as well as cyclic voltammogram studies. The optimum reaction conditions are obtained for diphenols production. Radical substitution mechanism is first proposed to explain the effects of pH, reaction medium and other factors on the phenol hydroxylation with H2O2 as oxidant, and found that the coexisting of iron(II)-1,10-phenanthroline and iron(III)-1,10-phenanthroline is the key for phenol hydroxylation to occur with H2O2 as oxygen donor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MCM-41 zeolite and Tron (II)-Phen/MCM-41 zeolite have been prepared and characterized by XRD, IR, NH3-TPD, HET and UV-Vis. The Iron( II)-Phen/MCM-41 zeolite+30% H2O2 system is capable for catalyzing hydroxylation of phenol.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MCM-41 mesoporous molecular sieve and iron(II)-Phen/MCM-41 have been prepared and characterized by XRD, IR, NH3-TPD, BET and UV-Vis. The iron(II)-Phen/MCM-41 molecular sieve + 30% H2O2 system is capable of performing hydroxylation of phenol.