59 resultados para BCS theory
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Medium polarization effects are studied for S-1(0) pairing in nuclear matter within BHF approach. The screening potential is calculated in the RPA limit, suitably renormalized to cure the low density mechanical instability of nuclear matter. The self-energy corrections are consistently included resulting in a strong depletion of the Fermi surface. The self-energy effects always lead to a quenching of the gap, whereas it is almost completely compensated by the anti-screening effect in nuclear matter.
Resumo:
The 3PF2 superfluidity of neutron and proton is investigated in isospin-asymmetric nuclear matter within the Brueckner–Hartree–Fock approach and the BCS theory by adopting the Argonne V14 and the Argonne V18 nucleon-nucleon interactions. We find that pairing gaps in the 3PF2 channel predicted by adopting the AV14 interaction are much larger than those by the AV18 interaction. As the isospin-asymmetry increases, the neutron 3PF2 superfluidity is found to increase rapidly, whereas the proton one turns out to decrease and may even vanish at high enough asymmetries.As a consequence, the neutron 3PF2 superfluidity is much stronger than the proton one at high asymmetries and it predominates over the proton one in dense neutron-rich matter.
Resumo:
We have investigated the isospin dependence of the neutron and proton (PF2)-P-3 superfluidity in isospin-asymmetric nuclear matter within the framework of the Brueckner-Hartree-Fock approach and the BCS theory. We show that the (PF2)-P-3 neutron and proton pairing gaps depend sensitively on isospin asymmetry of asymmetric nuclear matter. As the isospin asymmetry increases, the neutron (PF2)-P-3 superfluidity becomes stronger and the peak value of the neutron (PF2)-P-3 pairing gap increases rapidly. The isospin dependence of the proton (PF2)-P-3 superfluidity is shown to be opposite to the neutron one. The proton (PF2)-P-3 superfluidity becomes weaker at a higher asymmetry and it even vanishes at high enough asymmetries. At high asymmetries, the neutron (PF2)-P-3 superfluidity turns out to be much stronger than the proton one, implying that the neutron (PF2)-P-3 superfluidity is dominated in the highly asymmetric dense interior of neutron stars.
Resumo:
We investigate the effect of microscopic three-body forces on the P-3 F-2 neutron superfluidity in neutron matter, beta-stable neutron star matter, and neutron stars by using the BCS theory and the Brueckner-Hartree-Fock approach. We adopt the Argonne V18 potential supplemented with a microscopic three-body force as the realistic nucleon-nucleon interaction. We have concentrated on studying the three-body force effect on the P-3 F-2 neutron pairing gap. It is found that the three-body force effect considerably enhances the P-3 F-2 neutron superfluidity in neutron star matter and neutron stars.
Resumo:
We investigate the (PF2)-P-3 neutron superfluidity in beta-stable neutron star matter and neutron stars by using the BCS theory and the Brueckner-Hartree-Fock approach. We adopt the Argonne V-18 potential supplemented with a microscopic three-body force as the realistic nucleon-nucleon interaction. We have concentrated on studying the three-body force effect on the (PF2)-P-3 neutron pairing gap. It is found that the three-body force effect is to enhance remarkably the (PF2)-P-3 neutron superfluidity in neutron star matter and neutron stars.
Resumo:
The neutron (PF2)-P-3 pairing gap in pure neutron matter, neutron (PF2)-P-3 gap and neutron-proton (SD1)-S-3 gap in symmetric nuclear matter have been studied by using the Brueckner-Hartree-Fock(BHF) approach and the BCS theory. We have concentrated on investigating and discussing the three-body force effect on the nucleon superfluidity. The calculated results indicate that the three-body force enhances remaxkably the (PF2)-P-3 superfluidity in neutron matter. It also enhances the (PF2)-P-3 superfluidity in symmetric nuclear matter and its effect increases monotonically as the Fermi-momentum k(F) increases, whereas the three-body force is shown to influence only weakly the neutron-proton (SD1)-S-3 gap in symmetric nuclear matter.
Resumo:
The neutron (PF2)-P-3 pairing gap in pure neutron matter has been studied by using the Brueckner-Hartree-Fock( BHF) approach and the BCS theory. We have concentrated our attention on investigating the three-body force effect on the neutron superfluidity in the (PF2)-P-3 channel. The calculated results indicate that the three-body force enhances remarkably the (PF2)-P-3 superfluidity in neutron matter. When adopting the BHF single-particle spectrum, the three-body force turns out to increase the maximum value of the pairing gap from about 0.22 MeV to about 0.5 MeV.
Resumo:
The proton and neutron S-1(0), pairing gaps and their isospin dependence in isospin asymmetric nuclear matter have been studied by the isospin dependent Brueckner-Hartree-Fock approach and the BCS theory. We have focused on investigating and discussing the effect of three-body force. The calculated results indicate that as the isospin asymmetry increases, the density range of the S-1(0) neutron superfluidity is narrowed slightly and the maximum value of the neutron pairing gap increases 9 while the density domain for the proton superfluidity enlarges rapidly and the peak value of the proton gap decreases remarkably. The three-body force turns out to affect only weakly the neutron S-1(0) superfluidity and its isospin dependence, i. e., it leads to a small reduction of the neutron S-1(0) paring gap. However, the three-body force not only reduces largely the strength of the proton S-1(0) gaps at high densities in highly asymmetric nuclear matter but also suppresses strongly the density domain for the proton S-1(0) superfluidity phase.
Resumo:
We have investigate the nucleon superfluidity in asymmetric nuclear matter and neutron star matter by using the Brueckner-Hartree-Fock approach and the BCS theory. We have predicted the isospin-asymmetry dependence of the nucleon superfluidity in asymmetric nuclear matter and discussed particularly the effect of microscopic three-body forces. It has been shown that the three-body force leads to a strong suppression of the proton S-1(0) superfluidity in beta -stable neutron star matter. Whereas the microscopic three-body force is found to enhance remarkably the (PF2)-P-3 neutron superfluidity in neutron star matter and neutron stars.
Resumo:
A density-dependent delta interaction (DDDI) is proposed in the formalism of BCS-type pairing correlations for exotic nuclei whose Fermi surfaces are close to the threshold of the unbound state. It provides the possibility to pick up those states whose wave functions are concentrated in the nuclear region by making the pairing matrix elements state dependent. On this basis, the energy level distributions, occupations, and ground-state properties are self-consistently studied in the RMF theory with deformation. Calculations are performed for the Sr isotopic chain. A good description of the total energy per nucleon, deformations, two-neutron separation energies and isotope shift from the proton drip line to the neutron drip line is found. Especially, by comparing the single-particle structure from the DDDI pairing interaction with that from the constant pairing interaction for a very neutron-rich nucleus it is demonstrated that the DDDI pairing method improves the treatment of the pairing in the continuum.
Resumo:
The ground state properties of the Pb isotopic are studied by using the axially deformed relativistic mean field (RMF) calculation with the parameter set TM1. The pairing correlation is treated by the BCS method and the isospin dependent pairing force is used. The 'blocking' method is used to deal with unpaired nucleons. The theoretical results show that the relativistic mean field theory with non-linear self-interactions of mesons provides a good description of the binding energy and neutron separation energy. The present paper focus on the physical mechanism of the Pb isotope shifts.
Resumo:
The axially deformed relativistic mean field theory with the force NLSH has been performed in the blocked BCS approximation to investigate the proper-ties and structure of N=Z nuclei from Z=20 to Z=48. Some ground state quantities such as binding energies, quadrupole deformations, one/two-nucleon separation energies, root-mean-squaxe (rms) radii of charge and neutron, and shell gaps have been calculated. The results suggest that large deformations can be found in medium-heavy nuclei with N=Z=38-42. The charge and neutron rms radii increase rapidly beyond the magic number N=Z=28 until Z=42 with increasing nucleon number, which is similar to isotope shift, yet beyond Z=42, they decrease dramatically as the structure changes greatly from Z=42 to Z=43. The evolution of shell gaps with proton number Z can be clearly observed. Besides the appearance of possible new shell closures, some conventional shell closures have been found to disappear in some region. In addition, we found that the Coulomb interaction is not strong enough to breakdown the shell structure of protons in the current region.
Resumo:
A dislocation theory of fracture criterion for the mixed dislocation emission and cleavage process in an anisotropic solid is developed in this paper. The complicated cases involving mixed-mode loading are considered here. The explicit formula for dislocations interaction with a semi-infinite crack is obtained. The governing equation for the critical condition of crack cleavage in an anisotropic solid after a number dislocation emissions is established. The effects of elastic anisotropy, crack geometry and load phase angle on the critical energy release rate and the total number of the emitted dislocations at the onset of cleavage are analysed in detail. The analyses revealed that the critical energy release rates can increase to one or two magnitudes larger than the surface energy because of the dislocation emission. It is also found elastic anisotropy and crystal orientation have significant effects on the critical energy release rates. The anisotropic values can be several times the isotropic value in one crack orientation. The values may be as much as 40% less than the isotropic value in another crack orientation and another anisotropy parameter. Then the theory is applied to a fee single crystal. An edge dislocation can emit from the crack tip along the most highly shear stressed slip plane. Crack cleavage can occur along the most highly stressed slip plane after a number of dislocation emissions. Calculation is carried out step by step. Each step we should judge by which slip system is the most highly shear stressed slip system and which slip system has the largest energy release rate. The calculation clearly shows that the crack orientation and the load phase angle have significant effects on the crystal brittle-ductile behaviours.
Resumo:
Laminar-flow non-transferred DC plasma jets were generated by a torch with an inter-electrode insert by which the arc column was limited to a length of about 20 mm. Current–voltage characteristics, thermal efficiency and jet length, a parameter which changes greatly with the generating parameters in contrast with the almost unchangeable jet length of the turbulent plasma, were investigated systematically, by using the similarity theory combined with the corresponding experimental examination. Formulae in non-dimensional forms were derived for predicting the characteristics of the laminar plasma jet generation, within the parameter ranges where no transfer to turbulent flow occurs. Mean arc temperature in the torch channel and mean jet-flow temperature at the torch exit were obtained, and the results indicate that the thermal conductivity feature of the working gas seems to be an important factor affecting thermal efficiency of laminar plasma generation.
Resumo:
A new phenomenological strain gradient theory for crystalline solid is proposed. It fits within the framework of general couple stress theory and involves a single material length scale Ics. In the present theory three rotational degrees of freedom omega (i) are introduced, which denote part of the material angular displacement theta (i) and are induced accompanying the plastic deformation. omega (i) has no direct dependence upon u(i) while theta = (1 /2) curl u. The strain energy density omega is assumed to consist of two parts: one is a function of the strain tensor epsilon (ij) and the curvature tensor chi (ij), where chi (ij) = omega (i,j); the other is a function of the relative rotation tensor alpha (ij). alpha (ij) = e(ijk) (omega (k) - theta (k)) plays the role of elastic rotation reason The anti-symmetric part of Cauchy stress tau (ij) is only the function of alpha (ij) and alpha (ij) has no effect on the symmetric part of Cauchy stress sigma (ij) and the couple stress m(ij). A minimum potential principle is developed for the strain gradient deformation theory. In the limit of vanishing l(cs), it reduces to the conventional counterparts: J(2) deformation theory. Equilibrium equations, constitutive relations and boundary conditions are given in detail. For simplicity, the elastic relation between the anti-symmetric part of Cauchy stress tau (ij), and alpha (ij) is established and only one elastic constant exists between the two tensors. Combining the same hardening law as that used in previously by other groups, the present theory is used to investigate two typical examples, i.e., thin metallic wire torsion and ultra-thin metallic beam bend, the analytical results agree well with the experiment results. While considering the, stretching gradient, a new hardening law is presented and used to analyze the two typical problems. The flow theory version of the present theory is also given.