25 resultados para Automatic water level recorder (AWLR)

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A test system was developed for measuring the pore pressure in porous media, and a new model was devised for the pore pressure testing in both saturated and unsaturated rock-soil. Laboratory experiments were carried out to determine the pore pressure during water level fluctuation. The variations of transient pore pressure vs. time at different locations of the simulated rock-soil system were acquired and processed, and meanwhile the deformation and failure of the model are observed. The experiment results show that whether the porous media are saturated or not, the transient pore pressure is mainly dependent on the water level fluctuation, and coupled with the variation of the stress field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The frequent drawdown of water level of Yangtze River will greatly influence the stability of the widely existing slopes in the Three Gorges reservoir zone, especially those layered ones. Apart from the fluctuating speed of water level, the different geological materials will also play important roles in the failure of slopes. Thus, it must be first to study the mechanism of such a landslide caused by drawdown of water level.A new experimental setup is designed to study the performance of a layered slope under the drawdown of water level. The pattern of landslide of a layered slope induced by drawdown of water level has been explored by means of simulating experiments. The influence of fluctuating speed of water level on the stability of the layered slope is probed,especially the whole process of deformation and development of landslide of the slope versus time. The experimental results show that the slope is stable during the water level rising, and the sliding body occurs in the upper layer of the slope under a certain drawdown speed of water level. In the process of slope failure, some new small sliding body will develop on the main sliding body, and the result is that they speed up the disassembly of the whole slope.Based on the simulating experiment on landslide of a layered slope induced by drawdown of water level, the stress and displacement field of the slope are calculated.The seepage velocity, the pore water pressure, and the gradient of pore water head are also calculated for the whole process of drawdown of water level. The computing results are in good agreement with the experimental results. Accordingly, the mechanism of deformation and landslide of the layered slope induced by drawdown of water level is analyzed. It may provide basis for treating this kind of layered slopes in practical engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hydraulic conductivity function of fractures is a key scientific question to describe and reveal the process and the role of water seepage reasonably. In this paper, the generation technology of random fracture network and the latest numerical computation method for equivalent permeability tensor of fracture network are applied to analyze the landslide located at Wangjiayuanzi in Wanzhou District of Chongqing by simulating the changes of the seepage field caused by the running of the Three Gorges Reservoir. The influences of the fracture seepage on the seepage field and stability of the landslide were discussed with emphasis. The results show that the fractures existing in the soil increase the permeability coefficient of the landslide body and reduce the delay time of the underground water level in the landslide which fluctuates relative to the water level of reservoir,that causes the safe coefficient of the slope changes more gently than that of the same slope without fractures. It means, if only water level fluctuating condition is concerned, the fractures existing in the soil plays a positive role to the stability of slopes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three lacustrine core samples were collected from Chaohu lake in December 2002 in the Yangtze delta region. The grain sizes were analyzed using a Laser Analyzer to obtain grain-size parameters. Sediment geochronology was determined in radioisotopes Cs-137 and the average sedimentary rates are 0.29cm.a(-1), 0.35 cm.a(-1) and 0.24cm-a(-1) in Cores C 1, C2 and C3, respectively. The grain-size parameters of the deposits vary regularly with the fluctuation of hydrodynamics. From 1950s to the beginning of 20th century, coarse-grained sediment was deposited, suggesting strong hydraulic conditions and high water-level periods with much precipitation; from the start of 20(th) century to latter half of 18(th) century, fine-grained sediment was deposited, indicating that weak hydraulic conditions and low water-level periods with less precipitation; before the first half of 18(th) century, coarse-grained sediment was deposited, suggesting great velocity of flow and high water-level periods of more precipitation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

通过对分层的边坡在水位变化时滑坡的模拟实验,考察了分层坡体的滑坡模式、坡体变形、破坏和渗流引起的滑坡,重点考察了水位涨落速度对坡体稳定的影响,以及坡面从产生张拉裂缝直到形成滑面的整个过程,并对这类滑坡中的现象给出了定性解释.最后用有限元对实验坡体进行了应力和位移的静力场分析,计算结果与实验结果基本一致.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By introducing a water depth connecting formula, the hydraulic equations in the dividing channel system were coupled and the relation of discharge distribution between the branches of the dividing channels can be yielded. In this manner, a numerical model for the confluent channels was established to study the variation of backwater effects with the parameters in the channel junction. The meeting of flood peaks in the mainstream and tributary can be analyzed with this model. The flood peak meeting is found to be a major factor for the extremely high water level in the mainstream during the 1998 Yangtze River flood. Subsequently the variations of discharge distribution and water level with channel parameters between each branch in this system were studied as well. As a result, flood evolution caused by Jingjiang River shortcut and sediment deposition in the entrance of dividing channels of the Yangtze River may be qualitatively elucidated. It is suggested to be an effective measure for flood mitigation to enhance regulation capability of reservoirs available upstream of the tributaries and harness branch entrance channels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A recurrent artificial neural network was used for 0-and 7-days-ahead forecasting of daily spring phytoplankton bloom dynamics in Xiangxi Bay of Three-Gorges Reservoir with meteorological, hydrological, and limnological parameters as input variables. Daily data from the depth of 0.5 m was used to train the model, and data from the depth of 2.0 m was used to validate the calibrated model. The trained model achieved reasonable accuracy in predicting the daily dynamics of chlorophyll a both in 0-and 7-days-ahead forecasting. In 0-day-ahead forecasting, the R-2 values of observed and predicted data were 0.85 for training and 0.89 for validating. In 7-days-ahead forecasting, the R-2 values of training and validating were 0.68 and 0.66, respectively. Sensitivity analysis indicated that most ecological relationships between chlorophyll a and input environmental variables in 0-and 7-days-ahead models were reasonable. In the 0-day model, Secchi depth, water temperature, and dissolved silicate were the most important factors influencing the daily dynamics of chlorophyll a. And in 7-days-ahead predicting model, chlorophyll a was sensitive to most environmental variables except water level, DO, and NH3N.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Poyang Lake is the largest lake and the main nursery area in the middle basin of the Changjiang (Yangtze) River. We compared molecular genetic markers of silver carp among populations of the Changjiang River, the Ganjiang River and the Poyang Lake using the ND5/6 region of mtDNA. Analysis of restriction fragment length polymorphisms (RFLPs) of this region revealed distinct variation between the Ganjiang River and the Changjiang River populations. The Poyang Lake is linked with the Ganjiang River and the Changjiang River. Shared RFLP fragments between the Ganjiang River population and the Poyang Lake population are as high as 61.4%. The value is 47.74% between the populations of the Changjiang River and that of the Poyang Lake. Frequencies of bands peculiar to the Ganjiang River population are the same as in the Poyang Lake population. We conclude that the Poyang Lake silver carp population consists mainly of the Ganjiang River population. The water level of the Poyang Lake outlet, which is higher than that of the Changjiang River in the silver carp spawning season, supports this conclusion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The natural reproduction of grass carp, black carp, silver carp, and bighead will be affected adversely by the Three Gorges Project in the Yangtze River. One of the methods to save the fish is to regulate the water levels, keeping them suited for the species to spawn. Nine factors associated with the scale of larvae-flood of the four species are classified into five levels, and the ranges of these factors producing larvae-floods are given by using the "factor-criteria system reconstruction analysis" method. Moderate beginning water levels and flow, with high daily increases in the rate of water level and flow, and a long duration of water level rising are important for the production of a large larvae-flood.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

九寨沟湖泊湿地在维持九寨沟的生态平衡中起着重要的作用,在旅游产业的发展下,湿地生态系统及生物多样性面临着较大的威胁。尽管九寨沟湿地具有重要的生态价值,但目前对其研究尚比较薄弱。湿地植物群落和植物地理研究可以为湿地资源的可持续利用和监测保护提供科学依据。作者从2004年8月到2007年11月对九寨沟湿地的植物物种组成、地理分布、优势植物群落的结构、生长动态、湿地土壤种子库进行了调查研究。主要结果如下: 1. 九寨沟湿地物种组成、地理分布特点及湿地植物群落特点 九寨沟湿地共有苔藓植物8科13属16种,维管植物为48科107属199种。九寨沟湿地植物的地理成份较为丰富,维管植物在科级水平上有7种地理分布型(变型),在属级水平上有13种地理分布型(变型), 在种级水平上共有29种地理分布型(变型)。九寨沟湿地植物以温带成份和我国特有成份为主,同时兼有热带、亚热带成份和环极—高山成份。九寨沟湿地植物的分布表现出明显的垂直地带性和水平地带性。湿地植物群落可划分21个群落类型,不同植物群落类型的物种多样性及物种组成存在较大的差异。九寨沟湿地植物的物种多样性和群落多样性以及较高的生产力特征,是维持其湿地生态景观多样性和稳定性的基础。 2. 土壤、水环境、海拔等对湿地植物的分布及生物多样性的影响 九寨沟湿地土壤、水等环境因子存在较大的差异。帕米尔苔草和宽叶香蒲等群落的凋落物较多,土壤有机碳、土壤总磷较高,可能是九寨沟湿地的重要土壤碳库。 九寨沟湿地植物沿水环境梯度的分布规律表现为:沉水植物(轮藻—篦齿眼子菜,水苦荬,杉叶藻)——挺水植物(水木贼,芦苇,宽叶香蒲)——湿生草本(苔草、节节草、披散木贼)——湿生灌木(柳灌丛,小檗灌丛)等。海拔也影响湿地植物的物种组成。 水深对物种多样性有影响,水深与物种丰富度负相关。随着水深的增加,水木贼、芦苇、杉叶藻、宽叶香蒲等群落的物种多样性下降;在长期淹水和季节性淹水的地方,水木贼群落物种多样性存在显著差异。土壤总氮与水木贼群落物种丰富度正相关。 3. 土壤营养元素、水环境对植物生长的影响 水深影响湿地植物生物量的分配。芦苇无性系分株在47 cm水深的环境中单株平均生物量最大;在干滩地中(地面水深0 cm),叶生物量百分比最大,而茎生物量百分比最小,茎的生物量百分比和生长速率随水深的增加而增加;在较干的滩地生境中,开花率、花序的生物量百分比明显大于水较深的生境。 水深与水木贼地上生物量负相关,但水木贼地上生物量在长期淹水和季节性淹水的地方没有显著的差异。在水浅的地方,杉叶藻、水木贼、芦苇等植物群落中,其他伴生物种的生物量占样方总生物量的百分比较大。 土壤有机碳、土壤总氮、土壤总磷等对湿地植物生物量的影响比较大:宽叶香蒲地上生物量与土壤总磷正相关;水木贼地上生物量与土壤总氮正相关;杉叶藻地上生物量与土壤有机碳正相关。 水深、土壤营养成分对湿地植物高度、密度等有影响。水木贼的平均高度在季节性淹水的地方比长期淹水的地方低,平均密度在长期淹水的地方比季节性淹水的地方低;除了5月份,其他观察月份水木贼的密度都与水深负相关,同时与土壤有机碳正相关。另外,芦苇密度与土壤有机碳含量正相关,宽叶香蒲密度与水深负相关,帕米尔苔草高度与土壤有机碳负相关。 4. 优势植物群落的动态变化 在优势植物群落中,优势种的高度、密度、盖度、生物量等在群落中占绝对优势。除五花海,水木贼群落的物种组成、高度、生物量在两年间没有显著的变化。芦苇群落的物种丰富度在近两年有所增加。 湿地植物生长表现为明显的季节动态,生长的峰值大多在7月-8月。优势植物群落的物候与水文周期有关。湿地植物群落的物种组成和密度,可以作为对湿地监测和保护的生物指示。 5. 九寨沟湿地土壤种子库特征及其在湿地生物多样性恢复中的作用 水深和现存植被物种丰富度可以解释湿地土壤种子库的变化。水深可以解释表层物种丰富度45%的变化。现存植被物种丰富度可以分别解释10 cm土层、2-5 cm土层及5-10 cm土层土壤种子库45%、48%和25%的变化。 湿地土壤种子库的密度为0-15945粒m-2, 种子库中共发现23个物种。现存植被优势物种和种子库优势物种不同。各层土壤种子库密度和物种丰富度并不存在显著的差异,但第二层土壤种子库密度最大。海拔、现存植被优势种盖度、土壤总磷、土壤总氮、土壤有机碳对湿地土壤种子库的密度和垂直结构没有影响。土壤种子库物种丰富度小于地上植被物种丰富度。湿地土壤种子库与地上植被的相关性不大。在浅水区域,湿地土壤种子库在湿地植被恢复中有一定作用。但在深水区域,保护现存植被更重要。 The lakeshore wetlands are valuable ecological units of the Jiuzhaigou lakes. Pressure for travel industry development pose a continuing and severe threat to the biodiversity-support function of the wetland system. Despite the ecological importance of wetlands in Jiuzhaigou, they are so far poorly studied. Both general plant communties and biogeographical studies are needed in order to attain basis for sustainable use the wetland resources and adequate protection of these areas. The present study was undertaken to examine aquatic plants distribution and the species compositon, structure and growth dynamics of their communities with variations of environmental factors along altitudes, water depth and soil properities gradients in Jiuzhaigou. Analysis of field survey data collected during August 2004 and November 2007 in lakeshore wetlands in Jiuzhaigou National Nature Reserve, Sichuan, China. The results were as following: (i) Species composition and biogeography in wetland vegetation 8 families, 13 genus, 16 species of moss and 48 families, 107 genus and 199 species of vascular plants in Jiuzhaigou wetlands were found. The floristic compositions were abundunt. Ten geographical distribution types at family level, 13 geographical distributions types at generic level and 29 geographical distribution types at specific level in vascular plants were found. Most species in Jiuzhaigou wetlands are temperate elements and Chinese endemic elements, with a few of tropical and subtropical and some circumarctic elements. And the plant distributions show clear vertical and horizontal patterns. There were 21 major wetland plant community types. Species composition and species richness in different plant communities are different. The species diversity and plant community diversity and their high biomass are the basis for the diversity and stability of wetland landscapes in Jiuzhaigou. (ii) Water depth, soil nutrients and altitudes influence on the species diversity and plant distribution. Total phosphorous and organic cabon in soil were higher in C. pamiernensis and T. latifolia communities, where are important cabon reservoirs in Jiuzhaigou wetlands. Along gradients of water depth, among populations of the dominant plant species present: submerged macrophytes (Chara vulgaris, Potagemonton pectinatus, Veronica anagalis-aquatica,Hippuris vulgaris), emergent macrophytes (Equisetum fluviatile, Phragamites australis, Typha latifolia), helophytes (Carex pamirensis )and shrubs (Salix sp., Berberis sp. ). Altitudes influence on the assemblage of plant communities. Water depth negatively correlated with species richness. Specie richness showed differences between permanently flooded sites and seasonally flooded sites in E. fluvatile communities. And total nitrogen in soil was negatively correlated with species richness in E. fluviatile communities. Altitudes show no significant influence on species richness, but in fact, through our analyses, they do have influence on the assemblage of wetland plants. (iii) Water depth, soil nutrients influence on the plant growth Water depth influences the biomass allocation in Phragmities australis. The average aboveground biomass of a single ramet (4.2 g) was the largest in the habitat with water level 47 cm above the soil surface. At the habitat with water level under soil surface 15 cm (-15 cm), the leaf biomass percentage (of the total ramet biomass) was the largest (46.1%), and the height and percentage of ramose ramets ( with branches on stem )(of the total ramets in a plot) were found obviously different. The deeper in water, the larger the biomass percentage and growth rate of stems were. The flowering rate and biomass of panicles were greater in shallow water than those in deep water. Water depth negatively correlated with aboveground biomass of E. fluviatile. However, above-ground biomass of E. fluviatile showed no significant difference between permanently flooded sites and seasonally flooded sites. But in shallow water, more biomasses of accompanying species were found in dominant plant communities such as H. vulgaris communities, E. fluviatile communities and P. australis communities. Water depth, soil nutrients influence on shoot density and shoot length of wetland plants. The shoot density of E. fluviatile was correlated to water depth in all growth months. Annual average density was significantly lower at permanently flooded sites than at seasonally flooded sites. But the annual average shoot length was significantly lower at seasonally flooded sites than at permanently flooded sites. (iv) Growth dynamics of dominant communities in Jiuzhaigou wetland The shoot length and shoot density, coverage and biomass of domiant species were dominated in plant communities. The species composition increased in P. australis communities in recent two years. The species richness in E. fluviatile communities showed no difference between 2005 and 2007. The above-ground biomass and shoot density in Five-flower Lake from July 2005 to July 2007 were significantly different, while in other sites, the differences were not significant. Shoot height, shoot density and above-ground biomass showed significant seasonal changes in all sites. Growth dynamics correlated with the cycle of water levels in lakes. Most plants growth parameters peaked at July or August. The biomass of T. latifolia peaked in August. But the shoot length of T. latifolia in deeper water peaked in July. The shoot length of E. fluviatile increased significantly from May to August except in seasonally flooded sites in Arrow-bamboo Lake. The species composition of communities and shoot density can be used as bioindicators in Jiuzhaigou wetland. (v) Soil seed bank in Jiuzhaigou wetland and its role in vegetation restoration Seed density in all soil layer samples was negatively correlated to water depth. Water depth can explain 45% variance of species richness in surface layer in sediment. Species richness in extant vegetation can explain 45%, 48%, 25% variance of species richness in total 10 cm and in 2-5 cm and 5-10 cm layer sediment respectively. Mean seed densities in wetlands ranged from 0 to 15945 m–2. A total of 23 species germinated in seed bank. The dominant species in seed bank and extant vegetation showed great difference. The total number of species and seedlings that germinated in different layers was not significantly different. But the second layer had the greatest seed density. In shallow water, seed bank can contribute to vegetation restoration, while in deeper water, protection of extant vegetation may be a better strategy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the recent (1970s-1990s) processes of river mouth bar formation, riverbed aggradation and distributary migration in the Huanghe River mouth area, in the light of station-based monitoring, field measurements and remote sensing interpretation. The results show that the morphological changes of the river mouth bar have been closely associated with the largely reduced fluvial discharge and sediment load. Landforrn development such as bar progradation occurred in two phases, i.e. before and after 1989, which correspond to faster and lower bar growth rates, respectively. Fast riverbed aggradation in the mouth channel was strongly related to river mouth bar progradation. During 1976-1996, about 2.8% of the total sediment loads were deposited in the river channel on the upper to middle delta. Therefore, the river water level rose by a few meters from 1984 to 1996. The frequent distributary channel migration, which switched the radial channel pattern into the SE-directed pattern in the mid-1980s, was linked with mouth bar formation. Marine conditions also constrain seaward bar progradation. Furthermore, the history of river mouth bar formation reflects human impacts, such as dredging and dyking in order to stabilize the coastal area. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, long interfacial waves of finite amplitude in uniform basic flows are considered with the assumption that the aspect ratio between wavelength and water depth is small. A new model is derived using the velocities at arbitrary distances from the still water level as the velocity variables instead of the commonly used depth-averaged velocities. This significantly improves the dispersion properties and makes them applicable to a wider range of water depths. Since its derivation requires no assumption on wave amplitude, the model thus can be used to describe waves with arbitrary amplitude.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An analysis of the water level and current data taken in Qiongzhou Strait in the South China Sea (SCS) over the last 37 years (1963 to 1999) was made to examine the characteristics of tidal waves and residual flow through the strait and their roles in the seasonal variation of the SCS circulation. The observations reveal that Qiongzhou Strait is an area where opposing tidal waves interact and a source of water transport to the Gulf of Beibu (Gulf of Tonkin), SCS. A year-round westward mean flow with a maximum speed of 10-40 cm s(-1) is found in Qiongzhou Strait. This accounts for water transport of 0.2-0.4 Sv and 0.1-0.2 Sv into the Gulf of Beibu in winter-spring and summer-autumn, respectively. The outflow from Qiongzhou Strait may cause up to 44% of the gulf water to be refreshed each season, suggesting that it has a significant impact on the seasonal circulation in the Gulf of Beibu. This finding is in contrast to our current understanding that the seasonal circulation patterns in the South China Sea are primarily driven by seasonal winds. Several numerical experiments were conducted to examine the physical mechanisms responsible for the formation of the westward mean flow in Qiongzhou Strait. The model provides a reasonable simulation of semidiurnal and diurnal tidal waves in the strait and the predicted residual flow generally agrees with the observed mean flow. An analysis of the momentum equations indicates that the strong westward flow is driven mainly by tidal rectification over variable bottom topography. Both observations and modeling suggest that the coastal physical processes associated with tidal rectification and buoyancy input must be taken into account when the mass balance of the SCS circulation is investigated, especially for the regional circulation in the Gulf of Beibu.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the second-order solutions obtained for the three-dimensional weakly nonlinear random waves propagating over a steady uniform current in finite water depth, the joint statistical distribution of the velocity and acceleration of the fluid particle in the current direction is derived using the characteristic function expansion method. From the joint distribution and the Morison equation, the theoretical distributions of drag forces, inertia forces and total random forces caused by waves propagating over a steady uniform current are determined. The distribution of inertia forces is Gaussian as that derived using the linear wave model, whereas the distributions of drag forces and total random forces deviate slightly from those derived utilizing the linear wave model. The distributions presented can be determined by the wave number spectrum of ocean waves, current speed and the second order wave-wave and wave-current interactions. As an illustrative example, for fully developed deep ocean waves, the parameters appeared in the distributions near still water level are calculated for various wind speeds and current speeds by using Donelan-Pierson-Banner spectrum and the effects of the current and the nonlinearity of ocean waves on the distribution are studied. (c) 2006 Elsevier Ltd. All rights reserved.