9 resultados para Autoinducer-2 Analogs
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Regulation of autoinducer 2 production and luxS expression in a pathogenic Edwardsiella tarda strain
Resumo:
Edwardsiella tarda is a bacterial pathogen that can infect both humans and animals. TX1, an Ed. tarda strain isolated from diseased fish, was found to produce autoinducer 2 (Al-2)-like activity that was growth phase dependent and modulated by growth conditions. The gene coding for the Al-2 synthase was cloned from TX1 and designated luxS(Et). LuxS(Et) was able to complement the Al-2 mutant phenotype of Escherichia coli strain DH5 alpha. Expression Of luxS(Et) correlated with Al-2 activity and was increased by glucose and decreased by elevated temperature. The effect of glucose was shown to be mediated through the cAMP-CRP complex, which repressed luxS(Et) expression. Overexpression of luxS(Et) enhanced Al-2 activity in TX1, whereas disruption of luxS(Et) expression by antisense RNA interference (i) reduced the level of Al-2 activity, (ii) impaired bacterial growth under various conditions, (iii) weakened the expression of genes associated with the type III secretion system and biofilm formation, and (iv) attenuated bacterial virulence. Addition of exogenous Al-2 was able to complement the deficiencies in the expression of TTSS genes and biofilm production but failed to rescue the growth defects. Our results (i) demonstrated that the Al-2 activity in TX1 is controlled at least in part at the level of luxS(Et) expression, which in turn is regulated by growth conditions, and that the temporal expression of luxS(Et) is essential for optimal bacterial infection and survival; and (ii) suggested the existence in Ed. tarda of a LuxS/Al-2-mediated signal transduction pathway that regulates the production of virulence-associated elements.
Regulation of autoinducer 2 production and luxS expression in a pathogenic Edwardsiella tarda strain
Resumo:
Edwardsiella tarda is a bacterial pathogen that can infect both humans and animals. TX1, an Ed. tarda strain isolated from diseased fish, was found to produce autoinducer 2 (Al-2)-like activity that was growth phase dependent and modulated by growth conditions. The gene coding for the Al-2 synthase was cloned from TX1 and designated luxS(Et). LuxS(Et) was able to complement the Al-2 mutant phenotype of Escherichia coli strain DH5 alpha. Expression Of luxS(Et) correlated with Al-2 activity and was increased by glucose and decreased by elevated temperature. The effect of glucose was shown to be mediated through the cAMP-CRP complex, which repressed luxS(Et) expression. Overexpression of luxS(Et) enhanced Al-2 activity in TX1, whereas disruption of luxS(Et) expression by antisense RNA interference (i) reduced the level of Al-2 activity, (ii) impaired bacterial growth under various conditions, (iii) weakened the expression of genes associated with the type III secretion system and biofilm formation, and (iv) attenuated bacterial virulence. Addition of exogenous Al-2 was able to complement the deficiencies in the expression of TTSS genes and biofilm production but failed to rescue the growth defects. Our results (i) demonstrated that the Al-2 activity in TX1 is controlled at least in part at the level of luxS(Et) expression, which in turn is regulated by growth conditions, and that the temporal expression of luxS(Et) is essential for optimal bacterial infection and survival; and (ii) suggested the existence in Ed. tarda of a LuxS/Al-2-mediated signal transduction pathway that regulates the production of virulence-associated elements.
Resumo:
Edwardsiella tarda is a gram-negative pathogen with a broad host range that includes humans, animals, and fish. Recent studies have shown that the LuxS/autoinducer type 2 (AI-2) quorum sensing system is involved in the virulence of E. tarda. In the present study, it was found that the E. tarda LuxS mutants bearing deletions of the catalytic site (C site) and the tyrosine kinase phosphorylation site, respectively, are functionally inactive and that these dysfunctional mutants can interfere with the activity of the wild-type LuxS. Two small peptides, 5411 and 5906, which share sequence identities with the C site of LuxS, were identified. 5411 and 5906 proved to be inhibitors of AI-2 activity and could vitiate the infectivity of the pathogenic E. tarda strain TX1. The inhibitory effect of 5411 and 5906 on AI-2 activity is exerted on LuxS, with which these peptides specifically interact. The expression of 5411 and 5906 in TX1 has multiple effects (altering biofilm production and the expression of certain virulence-associated genes), which are similar to those caused by interruption of luxS expression. Further study found that it is very likely that 5411 and 5906 can be released from the strains expressing them and, should TX1 be in the vicinity, captured by TX1. Based on this observation, a constitutive 5411 producer (Pseudomonas sp. strain FP3/pT5411) was constructed in the form of a fish commensal isolate that expresses 5411 from a plasmid source. The presence of FP3/pT5411 in fish attenuates the virulence of TX1. Finally, it was demonstrated that fish expressing 5411 directly from tissues exhibit enhanced resistance against TX1 infection.
Resumo:
Edwardsiella tarda is a gram-negative pathogen with a broad host range that includes humans, animals, and fish. Recent studies have shown that the LuxS/autoinducer type 2 (AI-2) quorum sensing system is involved in the virulence of E. tarda. In the present study, it was found that the E. tarda LuxS mutants bearing deletions of the catalytic site (C site) and the tyrosine kinase phosphorylation site, respectively, are functionally inactive and that these dysfunctional mutants can interfere with the activity of the wild-type LuxS. Two small peptides, 5411 and 5906, which share sequence identities with the C site of LuxS, were identified. 5411 and 5906 proved to be inhibitors of AI-2 activity and could vitiate the infectivity of the pathogenic E. tarda strain TX1. The inhibitory effect of 5411 and 5906 on AI-2 activity is exerted on LuxS, with which these peptides specifically interact. The expression of 5411 and 5906 in TX1 has multiple effects (altering biofilm production and the expression of certain virulence-associated genes), which are similar to those caused by interruption of luxS expression. Further study found that it is very likely that 5411 and 5906 can be released from the strains expressing them and, should TX1 be in the vicinity, captured by TX1. Based on this observation, a constitutive 5411 producer (Pseudomonas sp. strain FP3/pT5411) was constructed in the form of a fish commensal isolate that expresses 5411 from a plasmid source. The presence of FP3/pT5411 in fish attenuates the virulence of TX1. Finally, it was demonstrated that fish expressing 5411 directly from tissues exhibit enhanced resistance against TX1 infection.
Resumo:
A new straightforward strategy for synthesis of novel hyperbranched poly (ether amide)s from readily available monomers has been developed. By optimizing the reaction conditions, the AB(2)-type monomers were formed dominantly during the initial reaction stage. Without any purification, the AB(2) intermediate was subjected to further polymerization in the presence (or absence) of an initiator, to prepare the hyperbranched polymer-bearing multihydroxyl end-groups. The influence of monomer, initiator, and solvent on polymerization and the molecular weight (MW) of the resultant polymers was studied thoroughly. The MALDI-TOF MS of the polymers indicated that the polymerization proceeded in the proposed way. Analyses of H-1 NMR and C-13 NMR spectra revealed the branched structures of the polymers obtained. These polymers exhibit high-moderate MWs and broad MW distributions determined by gel permeation chromatography (GPC) in combination with triple detectors, including refractive index, light scattering, and viscosity detectors. In addition, the examination of the solution behavior of these polymers showed that the values of intrinsic viscosity [eta] and the Mark-Houwink exponent a were remarkably lower compared with their linear analogs, because of their branched nature.
Resumo:
A new polyoxometalate derivative {PW9V3O40[Ag(2,2'-bipy)](2)[Ag-2(2,2'-bipy)(3)](2)} 1 has been hydrothermally synthesized and structurally characterized by the single crystal X-ray diffraction. X-Ray analysis showed that both [Ag(2,2'-bipy)](+) and [Ag-2(2,2'-bipy)(3)](2+) units are supported on the alpha-Keggin polyoxoanion [PW9V3O40](6-) via the surface bridging oxygen atoms. 1 represents the first alpha-Keggin type polyoxoanion coordinated with four transition metal complex moieties, which further acts as a neutral molecular units for the construction of an interesting three-dimensional supramolecular framework.
Resumo:
The crystal structure of the title complex salt has been determined by single-crystal X-ray structure analysis. The crystal data areas follows; Monoclinic, P2(1)/c, a=15.6480(10)Angstrom, b=16.7870(10)Angstrom, c=10.347(2)Angstrom, beta=90.790(10), V=2717.7(6)Angstrom(3), Z=3, and R=0.0333 for 4789 unique reflections. The complex anion has a pseudo-octahedral structure distorted more than the Cr-III and Co-III analogs, in which each, iminodiacetato ligand (ida(2-)) is coordinated in a facial fashion with the two N atoms in a cis configuration, resulting in an unsym-fac structure.