101 resultados para Augmented-wave Method

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electronic states of nano-structures are studied in the framework of effective-mass envelope-function theory using the plane wave basis. The barrier width and the number of plane waves are proposed to be 2.5 times the effective Bohr radius and 15(n), respectively, for n-dimensional nano-structures (n = 1,2,3). Our proposals can be widely applied in the design of various nano-structure devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using first-principles band structure methods, we investigate the interactions between different donors in In2O3. Through the formation energy and transition energy level calculations, we find that an oxygen-vacancy creates a deep donor level, while an indium-interstitial or a tin-dopant induces a shallow donor level. The coupling between these donor levels gives rise to even shallower donor levels and leads to a significant reduction in their formation energies. Based on the analysis of the PBE0-corrected band structure and the molecular-orbital bonding diagram, we demonstrate these effects of donor-donor binding. In addition, total energy calculations show that these defect pairs tend to be more stable with respect to the isolated defects due to their negative binding energies. Thus, we may design shallow donor levels to enhance the electrical conductivity via the donor donor binding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cupric iodide is a p-type semiconductor and has a large band gap. Doping of Mn, Co, and Ni are found to make gamma-CuI ferromagnetic ground state, while Cr-doped and Fe-doped CuI systems are stabilized in antiferromagnetic configurations. The origins of the magnetic ordering are demonstrated successfully by the phenomenological band coupling model based on d-d level repulsions between the dopant ions. Furthermore, using a molecular-orbital bonding model, the electronic structures of the doped CuI are well understood. According to Heisenberg model, high-T-C may be expected for CuI:Mn and CuI:Ni if there are no native defects or other impurities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using first-principles methods we have calculated electronic structures, optical properties, and hole conductivities of CuXO2 (X=Y, Sc, and Al). We show that the direct optical band gaps of CuYO2 and CuScO2 are approximately equal to their fundamental band gaps and the conduction bands of them are localized. The direct optical band gaps of CuXO2 (X=Y, Sc, and Al) are 3.3, 3.6, and 3.2 eV, respectively, which are consistent with experimental values of 3.5, 3.7, and 3.5 eV. We find that the hole mobility along long lattice c is higher than that along other directions through calculating effective masses of the three oxides. By analyzing band offset we find that CuScO2 has the highest valence band maximum (VBM) among CuXO2 (X=Y, Sc, and Al). In addition, the approximate transitivity of band offset suggests that CuScO2 has a higher VBM than CuGaO2 and CuInO2 [Phys. Rev. Lett. 88, 066405 (2002)]. We conclude that CuScO2 has a higher p-type doping ability in terms of the doping limit rule. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2991157]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

InGaN/GaN multi-quantum-well blue (461 +/- 4 nm) light emitting diodes with higher electroluminescence intensity are obtained by postgrowth thermal annealing at 720 C in O-2-ambient. Based on our first-principle total-energy calculations, we conclude that besides dissociating the Mg-H complex by forming H2O, annealing in O-2 has another positive effect on the activation of acceptor Mg in GaN. Mg can be further activated by the formation of an impurity band above the valence band maximum of host GaN from the passivated Mg-Ga-O-N complex. Our calculated ionization energy for acceptor Mg in the passivated system is about 30 meV shallower than that in pure GaN, in good agreement with previous experimental measurement. Our model can explain that the enhanced electroluminescence intensity of InGaN/GaN MQWs based on Mg-doped p-type GaN is due to a decrease in the ionization energy of Mg acceptor with the presence of oxygen. (C) 2008 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using the first-principles methods, we study the electronic structure, intrinsic and extrinsic defects doping in transparent conducting oxides CuGaO2. Intrinsic defects, acceptor-type and donor-type extrinsic defects in their relevant charge state are considered. The calculation result show that copper vacancy and oxygen interstitial are the relevant defects in CuGaO2. In addition, copper vacancy is the most efficient acceptor. Substituting Be for Ga is the prominent acceptor, and substituting Ca for Cu is the prominent donors in CuGaO2. Our calculation results are expected to be a guide for preparing n-type and p-type materials in CuGaO2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Mg-Ga acceptor energy levels in GaN and random Al8In4Ga20N32 quaternary alloys are calculated using the first-principles band-structure method. We show that due to wave function localization, the MgGa acceptor energy level in the alloy is significantly lower than that of GaN, although the two materials have nearly identical band gaps. Our study demonstrates that forming AlxInyGa1-x-yN quaternary alloys can be a useful approach to lower acceptor ionization energy in the nitrides and thus provides an approach to overcome the p-type doping difficulty in the nitride system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By employing first-principle total-energy calculations, a systematic study of the dopability of ZnS to be both n- and p-types compared with that of ZnO is carried out. We find that all the attempted acceptor dopants, group V substituting on the S lattice site and group I and IB on the Zn sites in ZnS, have lower ionization energies than the corresponding ones in ZnO. This can be accounted for by the fact that ZnS has relative higher valence band maximum than ZnO. Native ZnS is weak p-type under S-rich condition, as the abundant acceptor V-Zn has rather large ionization energy. Self-compensations by the formation of interstitial donors in group I and IB-doped p-type ZnS can be avoided when sample is prepared under S-rich condition. In terms of ionization energies, Li-Zn and N-S are the preferred acceptors in ZnS. Native n- type doping of ZnS is limited by the spontaneous formation of intrinsic V-Zn(2-); high efficient n-type doping with dopants is harder to achieve than in ZnO because of the readiness of forming native compensating centers and higher ionization energy of donors in ZnS. (C) 2009 American Institute of Physics. [DOI 10.1063/1.3103585]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To improve the photoelectrochemical activity of TiO2 for hydrogen production through water splitting, the band edges of TiO2 should be tailored to match with visible light absorption and the hydrogen or oxygen production levels. By analyzing the band structure of TiO2 and the chemical potentials of the dopants, we propose that the band edges of TiO2 can be modified by passivated codopants such as (Mo+C) to shift the valence band edge up significantly, while leaving the conduction band edge almost unchanged, thus satisfying the stringent requirements. The design principle for the band-edge modification should be applicable to other wide-band-gap semiconductors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One-Hundred Talent Plan of the Chinese Academy of Sciences;National Science Fund for Distinguished Young Scholars 60925016;National High Technology Research and Development program of China 2009AA034101

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the density functional theory, we systematically study the optical and electronic properties of the insulating dense sodium phase (Na-hp4) reported recently (Ma et al., 2009). The structure is found optically anisotropic. Through Bader analysis, we conclude that ionicity exists in the structure and becomes stronger with increasing pressure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural, electronic, and mechanical properties of TaN were investigated by use of the density functional theory (DFT). Eight structures were considered, i.e.. hexagonal WC TaN, NiAs, wurtzite, and CoSn structures. cubic NaCl. zinc-blende and CsCl structures. The results indicate that TaN in TaN-type structure is the most stable at ambient conditions among the considered structures. Above 5 GPa, TaN in WC-type structure becomes energetically the most stable phase. They are also stable both thermodynamically and mechanically. TaN in WC-type has the largest shear Modulus 243 GPa and large bulk modulus 337 GPa among the considered structures. The Volume compressibility is slightly larger than diamond, but smaller than c-BN at pressures from 0 to 100 GPa. The compressibility along the c axis is smaller than the linear compressibility of both diamond and c-BN.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

On the basis of the pseudopotential plane-wave method and the local-density-functional theory, this paper studies energetics, stress-strain relation, stability, and ideal strength of beta-SiC under various loading modes, where uniform uniaxial extension and tension and biaxial proportional extension are considered along directions [001] and [111]. The lattice constant, elastic constants, and moduli of equilibrium state are calculated and the results agree well with the experimental data. As the four SI-C bonds along directions [111], [(1) over bar 11], [11(1) over bar] and [111] are not the same under the loading along [111], internal relaxation and the corresponding internal displacements must be considered. We find that, at the beginning of loading, the effect of internal displacement through the shuffle and glide plane diminishes the difference among the four Si-C bonds lengths, but will increase the difference at the subsequent loading, which will result in a crack nucleated on the {111} shuffle plane and a subsequently cleavage fracture. Thus the corresponding theoretical strength is 50.8 GPa, which agrees well with the recent experiment value, 53.4 GPa. However, with the loading along [001], internal relaxation is not important for tetragonal symmetry. Elastic constants during the uniaxial tension along [001] are calculated. Based on the stability analysis with stiffness coefficients, we find that the spinodal and Born instabilities are triggered almost at the same strain, which agrees with the previous molecular-dynamics simulation. During biaxial proportional extension, stress and strength vary proportionally with the biaxial loading ratio at the same longitudinal strain.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The electronic structure and mechanical properties Of UC2 and U2C3 have been systematically investigated using first-principles calculations by the projector-augmented-wave (PAW) method. Furthermore, in order to describe precisely the strong on-site Coulomb repulsion among the localized U 5f electrons, we adopt the generalized gradient approximation +U formalisms for the exchange-correlation term. We show that our calculated structural parameters and electronic properties for UC2 and U2C3 are in good agreement with the experimental data by choosing an appropriate Hubbard U = 3 eV. As for the chemical bonding nature, the contour plot of charge density and total density of states suggest that UC2 and U2C3 are metallic mainly contributed by the 5f electrons, mixed with significant covalent component resulted from the strong C-C bonds. The present results also illustrate that the metal-carbon (U-C) bonding and the carbon-carbon covalent bonding in U2C3 are somewhat weaker than those in UC2, leading to the weaker thermodynamic stability at high temperature as observed by experiments.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The electronic structure, elastic constants, Poisson's ratio, and phonon dispersion curves of UC have been systematically investigated from the first-principles calculations by the projector-augmented-wave (PAW) method. In order to describe precisely the strong on-site Coulomb repulsion among the localized U 5f electrons, we adopt the local density approximation (LDA) + U and generalized gradient approximation (GGA) + U formalisms for the exchange correlation term. We systematically study how the electronic properties and elastic constants of UC are affected by the different choice of U as well as the exchange-correlation potential. We show that by choosing an appropriate Hubbard U parameter within the GGA + U approach, most of our calculated results are in good agreement with the experimental data. Therefore. the results obtained by the GGA + U with effective Hubbard parameter U chosen around 3 eV for UC are considered to be reasonable. (C) 2009 Elsevier B.V. All rights reserved.