52 resultados para Atmospheric Co2

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The lunar day differs in length from the solar day so that times of low tide vary from day to day. Thus, aerial exposure of intertidal seaweeds may be during the day or during the night. We measured photosynthetic CO, assimilation rates of the intertidal green macroalga Ulva lactuca during exposures of varied daily timings during sunny days of summer to establish how photosynthetic performance responds to emersion timing under varied CO2 levels [at ambient (360 ppmv) and 2x ambient (720 ppmv) atmospheric CO2 concentrations]. There was an increase in net photosynthetic rates following some duration of exposure when the initial timing of exposure occurred during early morning (06.30 h) and late afternoon (17.15 h). In contrast, net rates exhibited a sharp decline with exposure duration when the initial timing of exposure occurred at 09.30 h, 15.30 h and especially at noon (12.30 h), implying the occurrence of a severe photoinhibition resulting from mid-day insolation. Doubled atmospheric CO2 concentration significantly enhanced the emersed photosynthetic rates, indicating that the emersed photosynthesis is CO2-limited at ambient CO2 levels. However, increasing CO2 barely stimulates the emersed photosynthetic rates during mid-day insolation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chlorella pyrenoidosa was cultured with 350 and 700 p.p.m.v. CO2 at varied levels of light to see the impacts of doubled atmospheric CO2 concentration on its growth and photosynthesis. The CO2 enrichment did not affect the growth rate (mu), but significantly increased the cell density when light was sufficiently supplied. The CO2 enrichment significantly depressed light-saturated photosynthesis and dark respiration in the cells grown under a high-light regime, but not those under a low-light regime. The light-saturating point for photosynthesis and photosynthetic efficiency was not affected by the CO2 enrichment under either the high-light or low-light conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon cycle is connected with the most important environmental issue of Global Change. As one of the major carbon reservoirs, oceans play an important part in the carbon cycle. In recent years, iron seems to give us a good news that oceanic iron fertilization could stimulate biological productivity as CO2 sink of human-produced CO2. Oceanic iron fertilization experiments have verified that adding iron into high nutrient low chlorophyll (HNLC) seawaters can increase phytoplankton production and export organic carbon, and hence increase carbon sink of anthropogenic CO2, to reduce global warming. In sixty days, the export organic carbon could reach 10 000 times for adding iron by model prediction and in situ experiment, i.e. the atmospheric CO2 uptake and inorganic carbon drawdown in upper seawaters also have the same magnitude. Therefore, oceanic iron fertilization is one of the strategies for increasing carbon sink of anthropogenic CO2. The paper is focused on the iron fertilization, especially in situ ocean iron experiments in order that the future research is more efficient.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

本文以跨越漫长地质历史时期的银杏类植物为研究对象,首次尝试在大的时间尺度上利用单一植物类群的气孔频度估测古大气CO2浓度的变化趋势。 一、借助多种研究手段对现代银杏(Ginkgo biloba)和9种化石银杏的叶表皮特征进行调查,并对现代银杏叶片蜡质晶体的形态结构和气孔发育过程进行了研究。应用荧光显微镜观察晚三叠世一种拜拉植物的角质层特征,根据其气孔下生型和平直的表皮细胞垂周壁等特点建 立新种—宁蒗拜拉(Baiera ninglangensis sp. nov.)。 二、在大气CO2浓度相对稳定的条件下,对不同条件下(不同季节,长短枝间,不同冠层间,不同叶片面积,雌雄树间)银杏叶片气孔密度和气孔指数的调查结果表明,其它环境因子对银杏气孔频度的影响很有限,而且通过一定的采样、测量和分析策略,可以排除其他环境和生物因子对气孔特征的影响。 三、74年间,大气CO2浓度上升55μmol•mol-1的同时,银杏的气孔密度降低了27%。而3属8种中生代和新生代银杏类植物在9个时间点的气孔密度和气孔指数都低于现存最近对应种的值,意味着当时的大气CO2浓度都高于目前的水平。根据最新评估标准,以气孔比率定量估算各个地质时代的大气CO2浓度,与前人的工作以及通过地球物理化学方法获得的显生宙大气CO2浓度进行比较。

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Intertidal marine macroalgae experience periodical exposures during low tide due to their zonational distribution. The duration of such emersion leads to different exposures of the plants to light and aerial CO2, which then affect the physiology of them to different extents. The ecophysiological responses to light and CO2 were investigated during emersion in two red algae Gloiopeltis furcata and Gigartina intermedia, and two brown algae Petalonia fascia and Sargassum hemiphyllum, growing along the Shantou coast of China. The light-saturated net photosynthesis in G. furcata and P. fascia showed an increase followed by slightly desiccation, whereas that in G. intermedia and S. hemiphyllum exhibited a continuous decrease with water loss. In addition, the upper-zonated G. furcata and P. fascia, exhibited higher photosynthetic tolerance to desiccation and required higher light level to saturate their photosynthesis than the lower-zonated G. intemedia and S. hemiphyllum. Desiccation had less effect on dark respiration in these four algae compared with photosynthesis. The light-saturated net photosynthesis increased with increased CO2 concentrations, being saturated at CO2 concentrations higher than the present atmospheric level in G. furcata, G. intermedia and S. hemiphyllum during emersion. It was evident that the relative enhancement of photosynthesis by elevated CO, in those three algae increased, though the absolute values of photosynthetic enhancement owing to CO2 increase were reduced when the desiccation statuses became more severe. However, in the case of desiccated P. fascia (water loss being greater than 20 %), light saturated net photosynthesis was saturated with current ambient atmospheric CO2 level. It is proposed that increasing atmospheric CO2 will enhance the daily photosynthetic production in intertidal macroalgae by varied extents that were related to the species and zonation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In order to investigate the possible impacts of increased atmospheric CO2 levels on algal growth and photosynthesis, the influence of CO2 concentration was tested on three planktonic algae (Chlamydomonas reinhardtii, Chlorella pyrenoidosa, and Scenedesmus obliquus). Increased CO2 concentration enhanced significantly the growth rate of all three species. Specific growth rates reached maximal values at 30, 100, and 60 muM CO2 in C. reinhardtii, C pyrenoidosa, and S. obliquus, respectively. Such significant enhancement of growth rate with enriched CO2 was also confirmed at different levels of inorganic N and P, being more profound at limiting levels of N in C pyrenoidosa and P in S. obliquus. The maximal rates of net photosynthesis, photosynthetic efficiency and light-saturating point increased significantly (p<0.05) in high-CO2-grown cells. Elevation of the CO2 levels in cultures enhanced the photoinhibition of C. reinhardtii, but reduced that of C pyrenoidosa and S. obliquus when exposed to high photon flux density. The photo-inhibited cells recovered to some extent (from 71% to 99%) when placed under dim light or in darkness, with better recovery in high-CO2-grown C. pyrenoidosa and S. obliquus. Although pH and pCO(2) effects cannot be distinguished from this study, it can be concluded that increased CO2 concentrations with decreased pH could affect the growth rate and photosynthetic physiology of C. reinhardtii, C. pyrenoidosa, and S. obliquus.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The effects on photosynthesis of CO, and desiccation in Porphyra haitanensis were investigated to establish the effects of increased atmospheric CO2 on this alga during emersion at low tides. With enhanced desiccation, net photosynthesis, dark respiration, photosynthetic efficiency, apparent carboxylating efficiency and light saturation point decreased, while the light compensation point and CO2 compensation point increased. Emersed net photosynthesis was not saturated by the present atmospheric CO2 level (about 350 ml m(-3)). and doubling the CO2 concentration (700 ml m(-3)) increased photosynthesis by between 31% and 89% at moderate levels of desiccation. The relative enhancement of emersed net photosynthesis at 700 ml m(-3) CO2 was greater at higher temperatures and higher levels of desiccation. The photosynthetic production of Porphyra haitanensis may benefit from increasing atmospheric CO2 concentration during emersion.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Microcystis aeruginosa Kutz. 7820 was cultured at 350 and 700 muL.L-1 CO2 to assess the impacts of doubled atmospheric CO2 concentration on this bloom-forming cyanobacterium. Doubling Of CO2 concentration in the airflow enhanced its growth by 52%-77%, with pH values decreased and dissolved inorganic carbon (DIC) increased in the medium. Photosynthetic efficiencies and dark respiratory rates expressed per unit chl a tended to increase with the doubling of CO2. However, saturating irradiances for photosynthesis and light-saturated photosynthetic rates normalized to cell number tended to decrease with the increase of DIC in the medium. Doubling of CO2 concentration in the airflow had less effect on DIC-saturated photosynthetic rates and apparent photosynthetic affinities for DIC. In the exponential phase, CO2 and HCO3- levels in the medium were higher than those required to saturate photosynthesis. Cultures with surface aeration were DIC limited in the stationary phase. The rate of CO2 dissolution into the liquid increased proportionally when CO2 in air was raised from 350 to 700 muL.L-1, thus increasing the availability of DIC in the medium and enhancing the rate of photosynthesis. Doubled CO2 could enhance CO2 dissolution, lower pH values, and influence the ionization fractions of various DIC species even when the photosynthesis was not DIC limited. Consequently, HCO3- concentrations in cultures were significantly higher than in controls, and the photosynthetic energy cost for the operation of CO2 concentrating mechanism might decrease.