140 resultados para Ataxie spinocérébelleuse de type-3 (SCA3)
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
空中花粉是植被类型、气候状况与大气环境质量的指示物之一。空中花粉雨的取样实验对化石花粉谱的解释和古植被的恢复具有指导意义,因此空中花粉分析成为第四纪孢粉学和古生态学研究的有效辅助手段。本研究在新疆天山中段北坡进行了短期的空中花粉监测(2001年7月~2006年7月),目的是获得局域性和区域性植被所散发的花粉类型及其数量信息,并探讨花粉数量的植被与气候指示意义、花粉传播以及受环境条件影响的程度,同时分析和检测花粉浓度受气候条件的影响情况。空中花粉的收集使用Cour-type捕捉器,分别在3个不同海拔梯度进行5年连续的空中花粉收集(夏秋季节每周一个样品,冬春季节每两周一个样品)。取样地点分别是新疆天山中段北部的天池气象观测站(43°53'58.38"N, 88°07'15.75"E , 海拔1942.5m)、中科院阜康荒漠生态系统定位站(44°17'27.41"N, 87°55'52.65"E, 海拔477m)和准噶尔盆地古尔班通古特沙漠南缘的北沙窝试验站(44°22'40.74"N, 87°55'9.74"E, 海拔443m),取样点的植被带跨度天山北坡的森林草原到低海拔的典型荒漠。 光学显微镜鉴定的空中花粉主要有43种类型(24科30属),而蕨类、苔藓与真菌孢子数量较少。孢粉类型多样性指数为2.45(Shannon Index)。显然,从样品中所鉴定的空中花粉种类与所观察的植物种类有很大的差距。花粉类型与数量在三个不同海拔梯度的取样点上也有明显差异。天池取样点的花粉类型较丰富,与天山北坡垂直带植被分布以及丰富的植被成分相对应,花粉的优势种类为雪岭云杉(Picea schrenkiana)、蒿属(Artemisia)、藜科(Chenopodiaceae)、柽柳科(Tamaricaceae)和麻黄属(Ephedra),高代表性的外源荒漠花粉类型“削弱了”本地花粉类型的代表性;阜康与北沙窝取样点的花粉类型主要来自荒漠成分的藜科、蒿属、麻黄属、蒺藜科(Zygophyllaceae, 白刺属Nitraria为主)、柽柳科(柽柳属为主)、蓼科(Polygonaceae, 沙拐枣属Calligonum为主)等耐旱植物。花粉数量与植被数量并非简单的线性关系。空中和表土花粉的数量分析表明,藜科、蒿属、麻黄属花粉具有超代表性;雪岭云杉花粉的代表性适中;禾本科(Gramineae)、榆属(Ulmus)、白刺属、柽柳科、沙拐枣属花粉代表性较差。 5年平均花粉浓度大小依次是阜康(81.668 grains/100m3)>天池(51.726 grains/100m3)>北沙窝(45.7685 grains/100m3)。蒿属花粉的峰值出现在秋季,并且出现双峰现象(可能与不同蒿类花期分布不均有关),而其它木本和草本类植物花粉浓度的峰值为单峰,具有明显的季节性,春夏之交开花的桦木属、榆属等类型较为明显。藜科花粉的峰值出现在夏季,麻黄和柽柳的峰值出现在盛夏,桦木属、柳属Salix、雪岭云杉等花粉浓度峰值出现在初夏,与其花期物候相对应。木本植物花粉以雪岭云杉为主,其次为桦木属(Betula)、榆属、柳属、胡颓子科(Elaeagnaceae)花粉,柳属花粉百分比在三个取样点分配比较均匀,桦木属花粉在空间分布上差异明显,与植物分布数量相关。胡颓子科的花粉出现时间短,数量也较少。榆属花粉出现的季节性明显,代表性也较差。因此解释地层中出现类似的低代表性和高代表性的花粉类型时,需要注意其百分比数量的适当校正。木本植物花粉百分比随海拔高度变化成正比关系,对植被的指示性较好。雪岭云杉的年平均花粉浓度在天池取样点明显高于其它两个取样点,5年的平均花粉浓度和百分比与海拔高度呈正比。天池取样点的百分比最高为28.85%,平均为21.15%,而北沙窝与阜康两地5年平均百分比含量分别为0.69%和1.57%,这种时空变化规律与植被数量的关系密切。藜科花粉百分比在阜康和北沙窝取样点占绝对优势,5年的平均花粉浓度与海拔高度呈反比。蒿属花粉年平均浓度与海拔高度关系微弱(R2=0.04,p =0.46),而花粉百分比与海拔高度有显著的线性正比关系(R2=0.72,p<0.0001)。但在低海拔的两个取样点之间差异不明显。 年平均花粉百分比和花粉浓度随海拔梯度而变化,主要花粉类型的变化规律存在差异。暗针叶林雪岭云杉花粉的年平均百分比在低海拔的阜康和北沙窝地区低于3%,在盛花期的6月初,低海拔的取样点也未见超过5%,雪岭云杉花粉的传播在研究区范围内数量分布变化较大,再次表明该类型的花粉在原地沉积效率很高。空中花粉数量能够较好地指示主要的植被带,盛花期内50%以上的雪岭云杉花粉含量则指示了雪岭云杉森林植被带,而高含量的蒿属植物花粉指示了天山山前冲积平原上的蒿类荒漠,相反,高含量的藜科花粉代表了低海拔地区的荒漠。雪岭云杉花粉百分比与浓度均与海拔高度呈显著的线性正比关系,表明雪岭云杉花粉传播的局限性。主要的非木本植物藜科花粉的浓度与海拔高度成反比,蒿属则相反,表明藜科与蒿属花粉在研究区具有很好的植被与气候指示意义。 花粉绝对数量、百分比、浓度具有明显的年际变化,其原因与气候状况的变化有关,年平均花粉浓度、主要类型的花粉浓度与气候参数(降水量、平均温度、最高和最低温度、相对湿度等)的相关分析表明,降水量和湿度与花粉浓度呈负相关程度较高,与其它气候参数则呈显著的正相关。干旱指数、花粉比值、花粉百分比(AP,NAP)与七月份平均气温,年平均降水量的相关系数(Pearson correlation),Ar/Ch与七月平均温度在0.01水平上呈显著的正相关(R2=0.894), 与年平均降水量在0.01水平上呈显著的负相关(R2=0.874)。AP花粉百分比与七月份平均温度呈显著的负相关(R2=0.71, p<0.0001),与年降水量呈正相关(R2=0.43, p=0.01),而NAP花粉正相反。利用短期监测的空中花粉雨数据计算得到的花粉比值以及干旱指数在研究区具有明确的指示意义,尤其是干旱指数、Ar/Ch、Ar/Ep,这些都可为表土花粉、植被与气候关系模型的建立提供重要的参考信息。 气候参数在很大程度上影响大气花粉的浓度,而风速和风向对空中花粉的传播、散布影响较大,花粉的来源与传播受风向和风速的控制。不同取样点的空中花粉数量差异受地形条件影响很明显,这种差异也可利用地形空气动力学特征的差异来解释,天池监测站因“逆坡”(upslope)的气流促进了低海拔的花粉流向高海拔传播。 研究区的空中花粉数量信息是研究表土花粉、植被和气候关系以及第四纪古生态学的重要基础。本研究提高了对研究区空中孢粉的类型及其传播规律的认识和理解,增加了解空中花粉受环境影响的主要因素及其影响程度,对地层孢粉类型鉴定和花粉数据的解释提出指导性建议,对本地区的古植被与古环境研究增加现代孢粉学的参考依据和信息,并可为建立区域性的现代孢粉-植被-气候关系模型提供可靠依据。 同时,本报告也讨论了存在问题和不足,并提出了今后工作的可能完善方案。
Resumo:
Floral organogenesis and development of Przeivalskia langutica Maxim, endemic to China and Hyoscyamus niger L. , which belong to the tribe Hyoscyameae (Solanaceae), were studied using scanning electron microscope. They have three common characters of floral organ initiation and development: 1) initia-tion of the floral organs in the two species follows Hofmeister's rule; 2) the mode of corolla tube development belongs to the "late sympetaly" type; 3) primordia of the floral appendages initiated in a pentameroua pattern and acropetal order. But initiation of the calyx-lobe primordia showed different modes in these two species. The calyx-lobe primordia of H, niger have simultaneously whorled initiation, while those of P, tangulica have helical initiation, but the five calyx-lobe primordia form a ring after all five calyx-lobe primordia occur. The systematic significance of the present results in the genera Hyoscyamus and Przeivalskia is discussed in this paper.
Resumo:
Chinese National Antarctic Research Expedition (CHTNARE) has collected 4480 meteorite specimens in the Grove Mountains, East Antarctica, from 1998 to 2003. According to the location characteristics and the diversity of the classification, the paper concludes that the Grove Mountains is another important meteorite concentration area in the Antarctica. The Concentration mechanisms at the site could be related to the last glacier activity and katabatic wind. An empirical model was proposed: 1) Probably during the Last Glacial Maximum, ice flow overrided the Gale Escarpment range in the area. Formerly concentrated meteorites were carried by the new glacier and stayed in the terminal moraine when the glacier retreated. 2) Blown by strong katabatic wind, Newly exposed meteorites on the ablation zone were scattered on the blue ice at the lee side of the Gale escarpment. Some of them would be buried when they were moved further onto the firn snow zone. Many floating meteorites stopped and mustered at the fringe of the moraine. The chemical-petrographic of 31 meteorites were assigned based on electron probe microanalyses, petrography and mineralogy, including 1 martian lherzolitic shergottite, 1 eucrite, 1 extreme fine grain octahedron iron meteorite, and 28 ordinary chondrites (the chemical groups: 7 H-group, 13 L-group, 6 LL-group, 2 L/LL group; the petrographic types: 6 unequilibrated type 3 and 22 equilibrated type 4-6). GRV99028 meteorite has the komatiite-like spinifex texture consisting of acicular olivine crystals and some hornblende-family minerals in the interstitial region. Possibly it has crystallized from a supercooled, impact-generated, ultramafic melt of the host chondrite, then experienced the retrogressive metamorphism. Four typical chondrule textures were studied: porphyritic texture, radiative texture, barred texture and glass texture. The minerals are characteristically enriched in MgO content.
Resumo:
We have fabricated 1.3-mu m InAs-GaAs quantum-dot (QD) lasers with and without p-type modulation doping and their characteristics have been investigated. We find that introducing p-type doping in active regions can improve the temperature stability of 1.3-mu m InAs-GaAs QD lasers, but it does not, increase the saturation modal gain of the QD lasers. The saturation modal gain obtained from the two types of lasers is identical (17.5 cm(-1)). Moreover, the characteristic temperature increases as cavity length increases for the two types of lasers, and it improves more significantly for the lasers with p-type doping due to their higher gain.
Resumo:
Living characteristics of facilely prepared Ziegler-Natta type catalyst system consisting of iron(III) 2-ethylhexanoate, triisobutylaluminum and diethyl phosphite have been found in the polymerization of 1,3-butadiene in hexane at 40 degrees C. The characteristics have been well demonstrated by: a first-order kinetics with respect to monomer conversion, a narrow molecular weight distribution (M-w/M-n = 1.48-1.52) of polybutadiene in the entire range of polymerization conversion and a good linearity between M-n and the yield of polymer. Feasible post-polymerization of 1,3-butadiene and block co-polymerization of 1,3-butadiene and isoprene further support the living natures of the catalyst bestowed with.
Resumo:
A new polyoxometalate derivative {PW9V3O40[Ag(2,2'-bipy)](2)[Ag-2(2,2'-bipy)(3)](2)} 1 has been hydrothermally synthesized and structurally characterized by the single crystal X-ray diffraction. X-Ray analysis showed that both [Ag(2,2'-bipy)](+) and [Ag-2(2,2'-bipy)(3)](2+) units are supported on the alpha-Keggin polyoxoanion [PW9V3O40](6-) via the surface bridging oxygen atoms. 1 represents the first alpha-Keggin type polyoxoanion coordinated with four transition metal complex moieties, which further acts as a neutral molecular units for the construction of an interesting three-dimensional supramolecular framework.
Resumo:
The electrochemical behavior of alpha-Keggin-type nanoparticles, Co(en)(3)(PMo12O40) (abbreviated as PMo12-Co), have been studied in poly(ethylene glycol) for four different molecular weights (PEG, average MW 400, 600, 1000, and 2000 g mol(-1)) and containing LiClO4 (O/Li=100/1) supporting electrolyte. The diffusion coefficients of the PMo12-Co nanoparticles were determined using a microelectrode by chronoamperometry for PEG of different molecular weights that were used to describe the diffusion behavior of PMo12-Co nanoparticles in different phase states. Moreover, the conductivity of the composite system increases upon addition of PMo12-Co nanoparticles, which was measured by an a.c. impedance technique. FT-IR spectra and DSC were used to follow the interactions of PEG-LiClO4-PMo12-Co, and well described the reason that the PMo12-Co nanoparticles could promote the conductivity of the PEG-LiClO4-PMo12-Co system.
Resumo:
Electrochemical properties of rare earth AB(3)-type hydrogen storage alloys as negative electrode material and a polymer instead of 6 M KOH aqueous solution as solid state electrolyte in MH-Ni battery have been investigated at room temperature and 28degreesC first time. The partial replacement of Ni by Al and Mn elements increases the specific capacity and cycle stability of the alloy.
Resumo:
Three series of samples LaMnyCo1-yO3+/-lambda, LaFeyMn1-yO3+/-lambda, and LaFeyCo1-yO3+/-lambda (y = 0.0 to 1.0) with Perovskite structure were prepared by an explosion method different from the generally used ceramic techniques. The variation of crystal
Resumo:
C-type lectins are a superfamily of carbohydrate-recognition proteins which play crucial roles in the innate immunity. In this study, the gene of a C-type lectin with multiple carbohydrate-recognition domains (CRDs) from scallop Chlamys farreri (designated as Cflec-3) was cloned by rapid amplification of cDNA ends (RACE) approach based on expression sequence tag (EST) analysis. The full-length cDNA of Cflec-3 was of 2256 bp. The open reading frame encoded a polypeptide of 516 amino acids, including a signal sequence and three CRDs. The deduced amino acid sequence of Cflec-3 showed high similarity to members of C-type lectin superfamily. By fluorescent quantitative real-time PCR, the Cflec-3 mRNA was mainly detected in hepatopancreas, adductor, mantle, and marginally in gill, gonad and hemocytes of healthy scallops. After scallops were challenged by Listonella anguillarum, the mRNA level of Cflec-3 in hemocytes was up-regulated and was significantly higher than that of blank at 8 h and 12 h post-challenge. The function of Cflec-3 was investigated by recombination and expression of the cDNA fragment encoding its mature peptide in Escherichia coli BL21 (DE3)-pLysS. The recombined Cflec-3 (rCflec-3) agglutinated Gram-negative bacteria Pseudomonas stutzeri. The agglutinating activity was calcium-dependent and could be inhibited by D-mannose. These results collectively suggested that Cflec-3 was involved in the immune response against microbe infection and contributed to nonself-recognition and clearance of bacterial pathogens in scallop. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Numerical study of three-dimensional evolution of wake-type flow and vortex dislocations is performed by using a compact finite diffenence-Fourier spectral method to solve 3-D incompressible Navier-Stokes equations. A local spanwise nonuniformity in momentum defect is imposed on the incoming wake-type flow. The present numerical results have shown that the flow instability leads to three-dimensional vortex streets, whose frequency, phase as well as the strength vary with the span caused by the local nonuniformity. The vortex dislocations are generated in the nonuniform region and the large-scale chain-like vortex linkage structures in the dislocations are shown. The generation and the characteristics of the vortex dislocations are described in detail.
Resumo:
Mn+ irons were implanted to n-type Ge(1 1 1) single crystal at room temperature with an energy of 100 keV and a dose of 3 x 10(16) cm(-2). Subsequently annealing was performed at 400degreesC for 1 h under flowing nitrogen gas. X-ray diffraction measurements show that as-implanted sample is amorphous and the structure of crystal is restored after annealing. Polycrystalline germanium is formed in annealed sample. There are no new phases found except germanium. The samples surface morphologies indicate that annealed sample has island-like feature while there is no such kind of characteristic in as-implanted sample. The elemental composition of annealed sample was analyzed by Auger electron spectroscopy. It shows that manganese ions are deeply implanted into germanium substrate and the highest manganese atomic concentration is 8% at the depth of 120 nm. The magnetic properties of samples were investigated by an alternating gradient magnetometer. The annealed sample shows ferromagnetic behavior at room temperature.
Resumo:
Mn+ ions were implanted into n-type Ge(111) single crystal at room temperature at an energy of 100 keV with a dose of 3 x 1016 cm-2. Subsequent annealing was performed on the samples at 400 °C and 600 °C in a flowing nitrogen atmosphere. The magnetic properties of the samples have been investigated by alternating gradient magnetometer at room temperature. The compositional properties of the annealed samples were studied by Auger electron spectroscopy and the structural properties were analyzed by X-ray diffraction measurements. Magnetization measurements reveal room-temperature ferromagnetism for the annealed samples. The magnetic analysis supported by compositional and structural properties indicates that forming the diluted magnetic semiconductor (DMS) MnxGe1-x after annealing may account for the ferromagnetic behavior in the annealed samples.
Resumo:
Concrete is usually described as a three-phase material, where matrix, aggregate and interface zones are distinguished. The beam lattice model has been applied widely by many investigators to simulate fracture processes in concrete. Due to the extremely large computational effort, however, the beam lattice model faces practical difficulties. In our investigation, a new lattice called generalized beam (GB) lattice is developed to reduce computational effort. Numerical experiments conducted on a panel subjected to uniaxial tension show that the GB lattice model can reproduce the load-displacement curves and crack patterns in agreement to what are observed in tests. Moreover, the effects of the particle overlay on the fracture process are discussed in detail. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
In the present paper, a multifluid model of two-phase flows with pulverized-coal combustion, based on a continuum-trajectory model with reacting particle phase, is developed and employed to simulate the 3-D turbulent two-phase hows and combustion in a new type of pulverized-coal combustor with one primary-air jet placed along the wall of the combustor. The results show that: (1) this continuum-trajectory model with reacting particle phase can be used in practical engineering to qualitatively predict the flame stability, concentrations of gas species, possibilities of slag formation and soot deposition, etc.; (2) large recirculation zones can be created in the combustor, which is favorable to the ignition and flame stabilization.