58 resultados para Astronomical observatories

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well-known that cone effect or focus anisoplanatism is produced by the limited distance of a laser guide star (LGS) which is created within the Earth atmosphere and consequently located at a finite distance from the observer. In this paper, the cone effect of the LGS for different vertical profiles of the refractive index structure constant Cn2 is numerically investigated by using a revised computer program of atmospheric propagation of optical wave and an adaptive optics (AO) system including dynamic control process. According to the practice, the overall tilt for the tilt-correction mirror is obtained from a natural star and the aberrated wavefront for phase correction of the deformable mirror is obtained from a LGS in our numerical simulation. It is surprisingly found that the effect of altitude of the LGS on the AO phase compensation effectiveness by using the commonly-available vertical profiles of Cn2 and the lateral wind speed in the atmosphere is relatively weak, and the cone effect for some Cn2 profiles is even negligible. It is found that the cone effect does not have obvious relationship with the turbulence strength, however, it depends on the vertical distribution profile of Cn 2 apparently. On the other hand, the cone effect depends on the vertical distribution of the lateral wind speed as well. In comparison to a longer wavelength, the cone effect becomes more obvious in the case of a shorter wavelength. In all cases concerned in this paper, an AO system by using a sodium guide star has almost same phase compensation effectiveness as that by using the astronomical target itself as a beacon. Effect of dynamic control process in an AO system on the cone effect is studied in this paper for the first time within our knowledge.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on the authors' previous work, in this paper the systematical analyses on the motion and the inner solutions of a geostrophic vortex have been presented by means of thematched asymptotic expansion method with multiple time scales (S/gh001/2 and α S/gh001/2) and space scales. It has been shown that the leading inner solutions to the core structure in two-time scales analyses are identified with the results in normal one-time scale analyses. The time averages of the first-order solutions on short time variable τ are the same as the first-order solutions obtained in one normal time scale analyses. The geostrophic vortex induces an oscillatory motion in addition to moving with the background flow. The period, amplitude andthe deviation from the mean trajectory depend on the core structure and the initial conditions. The velocity of the motion of vortex center varies periodically and the time average of the velocity on short time variable τ is equal to the value of the local mean velocity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Basing ourselves on the analysis of magnitude of order, we strictly prove fundamental lemmas for asymptotic integral, including the cases of infinite region. Then a general formula for asymptotic expansion of integrals is given. Finally, we derive a sufficient condition for an ordinary differential equation to possess a solution of the Frobenius series type at finite irregular singularities or branching points.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By means of the matched asymptotic expansion method with one-time scale analysis we have shown that the inviscid geostrophic vortex solution represents our leading solution away from the vortex. Near the vortex there is a viscous core structure, with the length scale O(a). In the core the viscous stresses (or turbulent stresses) are important, the variations of the velocity and the equivalent height are finite and dependent of time. It also has been shown that the leading inner solutions of the core structure are the same for two different time scales of S/(ghoo)1/2 and S/a (ghoo)1/2. Within the accuracy of O(a) the velocity of a geostrophic vortex center is equal to the velocity of the local background flow, where the vortex is located, in the absence of the vortex. Some numerical examples demonstrate the contributions of these results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we study the fission of a solitary wave in the stratified fluid with a free surface. It has been discovered that there is no difference between the fissions of the internal solitary waves in odd or even modes, and the effect of the stratification on the fission of a surface solitary wave can almost be neglected

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An analytical method for determining slip shear rate under prescribed stress rate or prescribed strain rate has been presented on the basis of the incremental theory of crystal plasticity. The problem has been reduced to a quadric convex programming.In order to analyse the plastic response of crystals subjected to external load, two new extremum principles are proposed. They are equivalent to the boundary-value problem of crystal plasticity. By the new extremum principles, the slip shear rates are independent function which can be obtained from the variational equation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, a complete set of MHD equations have been solved by numerical calculations in an attempt to study the dynamical evolutionary processes of the initial equilibrium configuration and to discuss the energy storage mechanism of the solar atmosphere by shearing the magnetic field. The initial equilibrium configuration with an arch bipolar potential field obtained from the numerical solution is similar to the configuration in the vicinity of typical solar flare before its eruption. From the magnetic induction equation in the set of MHD equations and dealing with the non-linear coupling effects between the flow field and magnetic field, the quantitative relationship has been derived for their dynamical evolution. Results show that plasma shear motion at the bottom of the solar atmosphere causes the magnetic field to shear; meanwhile the magnetic field energy is stored in local regions. With the increase of time the local magnetic energy increases and it may reach an order of 4×10^25 J during a day. Thus the local storage of magnetic energy is large enough to trigger a big solar flare and can be considered as the energy source of solar flares. The energy storage mechanism by shearing the magnetic field can well explain the slow changes in solar active regions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ten kinds of the simplified Navier-Stokes equations (SNSE) are reviewed and also used to calculate the Jeffery-Hamel flow as well as to analyze briefly the seven kinds of flows to which the exact solutions of the complete Navier-Stokes equations (CNSE) have been found. Analysis shows that the actual differences among the solutions of the different SNSE can go beyond the range of the order of magnitude of Re-1/2 and result even in different flow patterns, therefore, how to choose the viscous terms included in the SNSE is worthy of notice where Re=S∞u∞ L/μ∞ is the Reynolds numbers. For the aforesaid eight kinds of flows, the solutions to the inner-outer-layer-matched SNSE and to the thin-layer-2-order SNSE agree completely with the exact solutions to CNSE. But the solutions to all the other SNSE are not completely consistent with the exact solutions to CNSE and not a few of them are actually the solutions of the classical boundary layer theory. The innerouter-layer-matched SNSE contains the shear stress causing angular displacement of the inormal axis with respect to the streamwise axis and the normal stress causing expansion-contraction in the direction of the normal axis and the viscous terms being of the order of magnitude of the normal stress; and it can also reasonably treat the inertial terms as well as the relation between the viscous and inertial terms. Therefore, it seems promising in respects of both mechanics and mathematics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new aerodynamic principle of flame stabilization and combustion intensification, the coflow jets with large velocity difference, is described. One or more small high-velocity jets of air or steam, injected off the axis and in the same direction as the low-velocity main fuel-air flow into the combustor, create a large recirculation zone of high turbulence intensity in which the combustibles and high temperature gases are effectively mixed, so that stable and intensive combustion can be maintained even for fuels with poor ignition. A pulverized coal combustor based on the principle mentioned above is shown to be characteristic of excellent combustoom and a simple structure. A number of precombustors of this type are in operation at some power stations and industrial boilers of China. Using such precombustor, successtul startups and part-load operation of the boilers have become available under conditions of unpreheated air and low-grade coal with volatiles as low as 15% and ash content as high as 30%. This principle shows good promise as an attractive new technology of combustion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The perturbation theory is applied further to the discussion of the equilibrium properties of a sunspot-like magnetic field with a strong twisted component. The basic state reduces to the usual one discussed extensively for the axisymmetric magnetostatic equilibrium with twisted component of magnetic field, and the perturbed state is described by two coupled equations. As the magnetic force-line is twisted, there is a magnetic tension in the azimuthal direction. In this case, the perturbed total pressure is no longer independent of the azimuthal variable θ, and the magnetic field in the dark penumbal fibril may be either stronger or weaker relatively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, fundamental equations of the plane strain problem based on the 3-dimensional plastic flow theory are presented for a perfectly-plastic solid The complete governing equations for the growing crack problem are developed. The formulae for determining the velocity field are derived.The asymptotic equation consists of the premise equation and the zero-order governing equation. It is proved that the Prandtl centered-fan sector satisfies asymptotic equation but does not meet the needs of hlgher-order governing equations.