103 resultados para Assaying apparatus
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
海底管道涡激振动和管道周围海床冲刷是海流--管道--海床之间复杂的动力耦合问题.文章应用量纲分析方法对海流、管道与海床之间的动力耦合作用进行了分析,确定了在实验模拟中应遵循的相似准则.在此基础上,研制了一套能模拟海流、海床与海底管道之间相互作用的实验模拟装置.初步实验结果表明文中研制的实验模拟装置能够模拟典型海洋环境下海底管道的涡激振动和管道周围海床冲刷等问题.
Resumo:
The performance of a small high-speed liquid jet apparatus is described. Water jets of 200m/s to 700m/s have been obtained by firing a deformable lead slug from an air rifle into a stainless steel nozzle containing water sealed with a rubber diaphragm. Nozzle devices of using the impact extrusion (IE) method and cumulation (CU) method are designed to generate jets. The injection sequences are visualized using schlieren photography. The difference between the IE and CU methods in the jet generation is found.
Resumo:
For the first time to our knowledge, in a high-energy laser facility with an output energy of 454.37 J, by using a temporal-space-transforming pulse-shaping system with our own design of a knife-edge apparatus, we obtained a quasi-square laser pulse. (c) 2005 Optical Society of America.
Resumo:
The performance of a small high-speed liquid jet apparatus is described. Water jets with velocities from 200 to 700 m/s were obtained by firing a deformable lead slug from an air rifle into a stainless steel nozzle containing water sealed with a rubber diaphragm. Nozzle devices using the impact extrusion (IE) and cumulation (CU) methods were designed to generate the jets. The effect of the nozzle diameter and the downstream distance on the jet velocity is examined. The injection sequences are visualized using both shadowgraphy and schlieren photography. The difference between the IE and CU methods of jet generation is found.
Resumo:
In order to improve the safety of high-energy solid propellants, a study is carried out for the effects of damage on the combustion of the NEPE (Nitrate Ester Plasticized Polyether) propellant. The study includes: (1) to introduce damage into the propellants by means of a large-scale drop-weight apparatus; (2) to observe microstructural variations of the propellant with a scanning electron microscope (SEM) and then to characterize the damage with density measurements; (3) to investigate thermal decomposition; (4) to carry out closed-bomb tests. The NEPE propellant can be considered as a viscoelastic material. The matrices of damaged samples axe severely degraded, but the particles are not. The results of the thermal decomposition and closed-bomb tests show that the microstructural damage in the propellant affects its decomposition and burn rate.
Resumo:
Based on similarity analyses, the flow-induced vibrations of a near-wall cylinder with 2 degrees of freedom are investigated experimentally by employing a hydroelastic apparatus in conjunction with a flume. The cylinder's vibration amplitude, vibration frequency and vortex shedding frequency were measured and analyzed. The effects of gap-to-diameter ratio (e,ID) upon the vibration responses are further investigated. The experimental results indicate that, when the reduced velocity (Vr) is small (e.g. Vr = 1.2 similar to 2.6), only streamwise vibration occurs, and its frequency is quite close to its natural frequency in still water. When increasing Vr (e.g. Vr > 3.4), both streamwise and transverse vibrations of the near-wall cylinder may occur. In the examined range of gap-to-diameter ratio (0.42 < e(0)/D < 2.68), 2 vibration stages (in terms of Vr) of streamwise vibrations usually exist: First Streamwise Vibration (FSV) and Second Streamwise Vibration (SSV). In the SSV stage, the vortex shedding frequency may either undergo a jump to that of the streamwise vibration, or stay consistent with that of the transverse vibration. The amplitudes of transverse vibration are usually much larger than those of streamwise vibration for the same value of e(0)/D. The maximum amplitudes of both streamwise and transverse vibration get larger with the increase of e(0)/D (0.42 < e(0)/D < 2.68).
Resumo:
This study deals with the sources of signal distortion of a piezoelectric transducer heated by measured gas flow. These signal distortions originate from both unloading of preload on a piezocrystal because of expansion of a diaphragm in the test apparatus and the pyroelectric effect of a heated piezoelectric crystal. A plastic film on the diaphragm of the transducer can effectively insulate the diaphragm and the piezocrystal within transducer from heating by gas flow, eliminating the sources of distortion. A method for evaluating the thickness of the film is proposed.
Resumo:
An apparatus of low-temperature controlling for fatigue experiments and its crack measuring system were developed and used for offshore structural steel A131 under conditions of both low temperature and random sea ice. The experimental procedures and data processing were described, and a universal random data processing software for FCP under spectrum loading was written. Many specific features of random ice-induced FCP which differed with constant amplitude FCP behaviours were proposed and temperature effect on ice-induced FCP was pointed out with an easily neglected aspect in designing for platforms in sea ice emphasized. In the end, differences of FCP behaviours between sea ice and ocean wave were presented.
Resumo:
A modified split Hopkinson torsional bar (SHTB) is introduced to eliminate the effect of the loading reverberation of the standard SHTB on the study of evolution of shear localization. The effect, the cause and the method by which to eliminate loading wave reverberation are carefully analysed and discussed. By means of the modified apparatus, the post-mortem observation of tested specimens can provide data on actual evolution of micro-structure and micro-damage during shear localization. Some test results of shear banding conducted with this apparatus support the use of the modified design. Moreover, the modification makes possible the correlation of evolving micro-structures to the transient shear stress-strain recording.
Resumo:
In order to develop the ultra-large scale integration(ULSI), low pressure and high density plasma apparatus are required for etching and deposit of thin films. To understand critical parameters such as the pressure, temperature, electrostatic potential and energy distribution of ions impacting on the wafer, it is necessary to understand how these parameters are influenced by the power input and neutral gas pressure. In the present work, a 2-D hybrid electron fluid-particle ion model has been developed to simulate one of the high density plasma sources-an Electron Cyclotron Resonance (ECR) plasma system with various pressures and power inputs in a non-uniform magnetic field. By means of numerical simulation, the energy distributions of argon ion impacting on the wafer are obtained and the plasma density, electron temperature and plasma electrostatic potential are plotted in 3-D. It is concluded that the plasma density depends mainly on both the power input and neutral gas pressure. However, the plasma potential and electron temperature can hardly be affected by the power input, they seem to be primarily dependent on the neutral gas pressure. The comparison shows that the simulation results are qualitatively in good agreement with the experiment measurements.
Resumo:
Following the quantitative determination of dust cloud parameters, this study investigates the flame propagation through cornstarch dust clouds in a vertical duct of 780 mm height and 160 x 160 mm square cross section, and gives particular attention to the effect of small scale turbulence and small turbulence intensity on flame characteristics. Dust suspensions in air were produced using an improved apparatus ensuring more uniform distribution and repeatable dust concentrations in the testing duct. The dispersion-induced turbulence was measured by means of a particle image velocimetry (PIV) system, and dust concentrations were estimated by direct weighing method. This quantitative assessment made it possible to correlate observed flame behaviors with the parameters of the dust cloud. Upward propagating dust flames, from both closed/open bottom end to open/closed top end of the duct, were visualized by direct light and shadow photography. From the observation of propagation regimes and the measurements of flame velocity, a critical value of the turbulence intensity can be specified below which laminar flame propagation would be established. This transition condition was determined to be 10 cm/s. Laminar flames propagated with oscillations from the closed bottom end to the open top end of the testing duct, while the turbulent flames accelerated continuously. Both laminar and turbulent flames propagated with steady velocity from the open bottom end to the closed top end of the duct. The measured propagation velocity of laminar flames appeared to be in the range of 0.45-0.56 m/s, and it was consistent with the measurements reported in the literature. In the present experimental study, the influence of dust concentration on flame propagation was also examined, and the flame propagation velocity was found weakly sensitive to the variations in dust concentration. Some information on the flame structure was revealed from the shadow records, showing the typical heterogeneous feature of the dust combustion process.