120 resultados para Applied Mechanics
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
《中国力学学会史》是《中国学会史丛书》之一。是一部全面系统记述中国力学学会建立与发展历程的专著。 《中国力学学会史》全书30万字,书中不但重点对学会的初创情况、发展过程、组织建设、学术交流、分支机构等进行了专门介绍,还特别收录了记述学会重大活动情况的大事记、名人与学会发展的丰富资料和一些极有史料价值的历史照片,旨在反映学会在不同时期的活动概况及其在中国力学界中发挥的桥梁与纽带作用。 中国力学学会是中国科协的组成部分,也是我国著名的学术团体之一,仅以此书的编著出版,纪念中国科协成立50周年和中国力学学会成立50多周年。本书可供力学界和科技界有关部门及工作者、各学会相关人员、大专院校师生参阅,也可作为组织和开展国内外学术交流研究的参考资料。
Resumo:
A dimensionless number, termed as response number in Zhao [Archive of Applied Mechanics 68 (1998) 524], has been suggested for the dynamic plastic response of beams and plates made up of rigidly perfect plastic materials subjected to dynamic loading. Many theoretical and experimental results can be reformulated into new concise forms with the response number. The concept of a new dimensionless number, response number, termed as Rn(n), is generalized in Zhao [Forschung im Ingenieurwesen 65 (1999) 107] to study the elastic, plastic, dynamic elastic as well as dynamic plastic buckling problems of columns, plates as well as shells. The response number Rn(n) is generalized to the dynamic behaviour of shells of various shapes in the present paper.
Resumo:
This paper provides an overview of ongoing studies in the area of thermocapillary convection driven by a surface tension gradient parallel to the free surface in a floating zone. Here, research interests are focused around the onset of oscillatory thermocapillary convection, also known as the transition from quasisteady convection to oscillatory convection. The onset of oscillation depends on a set of critical parameters, and the margin relationship can be represented by a complex function of the critical parameters. The experimental results indicate that the velocity deviation of an oscillatory flow has the same order of magnitude as that of an average flow, and the deviations of other quantities, such as temperature and free surface radii fluctuations, are much smaller when compared with their normal counterparts. Therefore, the onset of oscillation should be a result of the dynamic process in a fluid, and the problem is a strongly nonlinear one. In the past few decades, several theoretical models have been introduced to tackle the problem using analytical methods, linear instability analysis methods, energy instability methods, and unsteady 3D numerical methods. The last of the above mentioned methods is known to be the most suitable for a thorough analysis of strong nonlinear processes, which generally leads to a better comparison with the experimental results. The transition from oscillatory thermocapillary convection to turbulence falls under the studies of chaotic behavior in a new system, which opens a fascinating new frontier in nonlinear science, a hot research area drawing many recent works. This paper reviews theoretical models and analysis, and also experimental research, on thermocapillary connection in floating zones. It cites 93 references.
Resumo:
Modeling of fluid flows in crystal growth processes has become an important research area in theoretical and applied mechanics. Most crystal growth processes involve fluid flows, such as flows in the melt, solution or vapor. Theoretical modeling has played an important role in developing technologies used for growing semiconductor crystals for high performance electronic and optoelectronic devices. The application of devices requires large diameter crystals with a high degree of crystallographic perfection, low defect density and uniform dopant distribution. In this article, the flow models developed in modeling of the crystal growth processes such as Czochralski, ammonothermal and physical vapor transport methods are reviewed. In the Czochralski growth modeling, the flow models for thermocapillary flow, turbulent flow and MHD flow have been developed. In the ammonothermal growth modeling, the buoyancy and porous media flow models have been developed based on a single-domain and continuum approach for the composite fluid-porous layer systems. In the physical vapor transport growth modeling, the Stefan flow model has been proposed based on the flow-kinetics theory for the vapor growth. In addition, perspectives for future studies on crystal growth modeling are proposed. (c) 2008 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.
Resumo:
A novel stress-strain relation with two stages of linear elastic deformation is observed in [0 0 0 1]-oriented ZnO nanorods under uniaxial tensile loading. This phenomenon results from a phase transformation from wurtzite (WZ, P6(3)mc space group) to a body-centered tetragonal structure with four-atom rings (denoted as BCT-4) belonging to the P4(2)/mnm space group. The analysis here focuses on the effects of nanorod size and temperature on the phase transformation and the associated mechanical behavior. It is found that as size is increased from 19.5 to 45.5 angstrom, the critical stress for nucleation of the transformation decreases by 25% from 21.90 to 16.50 GPa and the elastic moduli of the WZ- and BCT-4-structured nanorods decrease by 24% (from 299.49 to 227.51 GPa) and 38% (from 269.29 to 166.86 GPa), respectively. A significant temperature effect is also observed, with the critical stress for transformation initiation decreasing 87.8% from 17.89 to 2.19 GPa as temperature increases from 300 to 1500 K. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The curvature-stress relation is studied for a film-substrate bilayer with the effect of interfacial slip and compared with that of an ideal interface without interfacial slip. The interfacial slip together with the dimensions, elastic and interfacial properties of the film and substrate layers can cause a significant deviation of curvature-stress relation from that with an ideal interface. The interfacial slip also results in the so-called free edge effect that the stress, constraint force, and curvature vary dramatically around the free edges. The constant curvature as predicted by Stoney's formula and the Timoshenko model of an ideal interface is no longer valid for a bilayer with a nonideal interface. The models with the assumption of an ideal interface can also lead to an erroneous evaluation on the true stress state inside a bilayer with a nonideal interface. The extended Stoney's formula incorporating the effects of both the layer dimensions and interfacial slip is presented.
Resumo:
We present a model in this paper for predicting the inverse Hall-Petch phenomenon in nanocrystalline (NC) materials which are assumed to consist of two phases: grain phase of spherical or spheroidal shapes and grain boundary phase. The deformation of the grain phase has an elasto-viscoplastic behavior, which includes dislocation glide mechanism, Coble creep and Nabarro-Herring creep. However the deformation of grain boundary phase is assumed to be the mechanism of grain boundary diffusion. A Hill self-consistent method is used to describe the behavior of nanocrystalline pure copper subjected to uniaxial tension. Finally, the effects of grain size and its distribution, grain shape and strain rate on the yield strength and stress-strain curve of the pure copper are investigated. The obtained results are compared with relevant experimental data in the literature.
Resumo:
The first-passage failure of quasi-integrable Hamiltonian si-stems (multidegree-of-freedom integrable Hamiltonian systems subject to light dampings and weakly random excitations) is investigated. The motion equations of such a system are first reduced to a set of averaged Ito stochastic differential equations by using the stochastic averaging method for quasi-integrable Hamiltonian systems. Then, a backward Kolmogorov equation governing the conditional reliability function and a set of generalized Pontryagin equations governing the conditional moments of first-passage time are established. Finally, the conditional reliability function, and the conditional probability density and moments of first-passage time are obtained by solving these equations with suitable initial and boundary conditions. Two examples are given to illustrate the proposed procedure and the results from digital simulation are obtained to verify the effectiveness of the procedure.
Resumo:
In this paper, the dynamic response of a penny-shaped interface crack in bonded dissimilar homogeneous half-spaces is studied. It is assumed that the two materials are bonded together with such a inhomogeneous interlayer that makes the elastic modulus in the direction perpendicular to the crack surface is continuous throughout the space. The crack surfaces art assumed to be subjected to torsional impact loading. Laplace and Hankel integral transforms are applied combining with a dislocation density,function to reduce the mixed boundary value problem into a singular integral equation with a generalized Cauchy kernel in Laplace domain. By solving the singular integral equation numerically, and using a numerical Laplace inversion technique, the dynamic stress intensity factors art obtained. The influences of material properties and interlayer thickness on the dynamic stress intensity factor are investigated.
Resumo:
<正> 1983年是美国机械工程协会主办的《应用力学杂志》(Journal of Applied Mechanics)创刊50周年。50年前,该刊编辑部登载了Timoshenko等人合写的一篇题为“应用力学的进展”的文章作为发刊词,该文仅涉及当时一般力学与经典连续介质力学若干领域的一些研究状况。50年后的今天,该刊编辑部继承了以往的传统,邀请37位专家(包括力学界的前辈与
Resumo:
In this paper, the initial development of microdamage in material subjected to impulsive loading was investigated experimentally and analytically with controllable short-load duration. Based on a general solution to the statistical evolution of a one-dimensional system of ideal microcracks, a prerequisite to experimental investigation of nucleation of microcracks was derived. By counting the number of microcracks, the distribution of nucleation of microcracks was studied. The law of the nucleation rate of microcracks can be expressed as a separable function of stress and cracksize. It is roughly linear dependence on loading stress. The normalized number density of microcracks is in agreement with that of a second-phase particle.
Resumo:
The vibration analysis of an elastic container with partially filled fluid was investigated in this paper. The container is made of a thin cylinder and two circular plates at the ends. The axis of the cylinder is in the horizontal direction. It is difficult to solve this problem because the complex system is not axially symmetric. The equations of motion for this system were derived. An incompressible and ideal fluid model is used in the present work. Solutions of the equations were obtained by the generalized variational method. The solution was expressed in a series of normalized generalized Fourier's functions. This series converged rapidly, and so its approximate solution was obtained with high precision. The agreement of the calculated values with the experimental result is good. It should be mentioned that with our method, the computer time is less than that with the finite-element method.
Resumo:
In this paper, a theory is developed to calculate the average strain field in the materials with randomly distributed inclusions. Many previous researches investigating the average field behaviors were based upon Mori and Tanaka's idea. Since they were restricted to studying those materials with uniform distributions of inclusions they did not need detailed statistical information of random microstructures, and could use the volume average to replace the ensemble average. To study more general materials with randomly distributed inclusions, the number density function is introduced in formulating the average field equation in this research. Both uniform and nonuniform distributions of inclusions are taken into account in detail.
Resumo:
<正>1 会议概况由中国力学学会主办,中国力学学会和北京工业大学共同承办的“中国力学学会学术大会’2005”(Chinese Conference of Theoretical and Applied Mechanics-2005,CCTAM’2005)于2005年8月26~28日在北京召开。大会主席由中国力学学会理事长崔尔杰院士担任,副主席有程耿东、贺德馨、李家春、沈为平、苏先樾、王自强、吴有生、杨卫、卢振洋、张泽。