38 resultados para Antisense Transcription
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Recent transcription profiling studies have revealed an unexpectedly large proportion of antisense transcripts in eukaryotic genomes. These antisense genes seem to regulate gene expression by interacting with sense genes. Previous studies have focused on the non-coding antisense genes, but the possible regulatory role of the antisense protein is poorly understood. In this study, we found that a protein encoded by the antisense gene ADF1 acts as a transcription suppressor, regulating the expression of sense gene MDF1 in Saccharomyces cerevisiae. Based on the evolutionary, genetic, cytological and biochemical evidence, we show that the protein-coding sense gene MDF1 most likely originated de novo from a previously non-coding sequence and can significantly suppress the mating efficiency of baker's yeast in rich medium by binding MAT alpha 2 and thus promote vegetative growth. These results shed new light on several important issues, including a new sense-antisense interaction mechanism, the de novo origination of a functional gene, and the regulation of yeast mating pathway.
Resumo:
GATA基因在脊椎动物和非脊椎动物的发育中行使重要的功能,该家族的成员在进化上也足非常保守的.脊椎动物的GATA基因分为两个亚群:GATA1/2/3和GATA4/5/6.通过生物信息分析,在文吕鱼的基因缓中找到了3个GATA基因:一个GATA1/2/3业家族基因,两个GATA4/5/6亚家族基因:还找到一个类GATA基因.还克隆了白氏文昌鱼(Branchiostoma belcheri)GATA123的一段序列,并研究了它在早期胚胎发育中的表达图式.结果表明GATA123在原肠胚的中内胚层表达,而在神经胚晚期和幼体早期,GATA123在脑泡和消化道中部区域表达.这种表达模式与头部发育的重要基因Otx相类似.结果提示在文吕鱼脑泡的发育过程中GATA123和Otx很可能共同发挥着重要的作用.
Resumo:
A comparative analysis on the intron sequence oligonucleotide usages in two sets of yeast genes with higher and lower transcription frequencies, respectively, has shown that the intron sequence structures of the two sets of genes are different. There are more potential binding sites for transcription factors in the introns of the genes with high transcription frequencies. So it is speculated that introns regulate the transcription of genes. But more evidences are needed to favor this speculation. The detailed comparative analyses on the distribution ( length and position) of introns and exons in the two sets of gene sequences also show that there is an obvious boundary between the lengths of the two sets of introns. There is no boundary between the lengths of the two sets of exons, although the means of their lengths are of discrepancy. The situation of the gene lengths ( length of intron and exon) is similar to exon lengths. As far as the relative position, the introns in two sets of genes all have a bias toward the 5' ends of genes. But as the actual position is considered, more introns in high transcription genes have a tendency to be located toward the 5' ends of genes, some even located at 5'-UTR. These results suggest that the gene transcription rates are related to the length of intron, but not to the lengths of exons and genes sequences. The positions of introns may also influence the transcription rates. The transcriptional regulation of introns may be correlative with the transcriptional regulation of the upstream of genes, or be its continuous action.
Resumo:
We conducted a comparative statistical analysis of tetra- through hexanucleotide frequencies in two sets of introns of yeast genes. The first set consisted of introns of genes that have transcription rates higher than 30 mRNAs/h while the second set contained introns of genes whose transcription rates were lower than or equal to 10 mRNAs/h. Some oligonucleotides whose occurrence frequencies in the first set of introns are significantly higher than those in the second set of introns were detected. The frequencies of occurrence of most of these detected oligonucleotides are also significantly higher than those in the exons flanking the introns of the first set. Interestingly some of these detected oligonucleotides are the same as well known "signature" sequences of transcriptional regulatory elements. This could imply the existence of potential positive regulatory motifs of transcription in yeast introns. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Fluorotelomer alcohols (FTOHs) have shown estrogenic activity in vitro and in vivo, but the mechanism of this activity is not known. In this study, 18-week-old zebrafish (Danio rerio) were exposed to 0, 0.03, 0.3 and 3.0 mg/l 1H, 1H, 2H, 2H-perfluorooctan-1-ol (6:2 ETCH) for 7 days, and the effects on plasma sex hormone levels were measured followed by use of real-time PCR to examine selected gene expression in hypothalamic-pituitary-gonadal (HPG) axis and liver. Exposure to 6:2 FTOH significantly increased plasma estradiol (E2) and testosterone (T) levels in both males and females. Furthermore, the ratio of T/E2 was reduced in females while increased in males. In females, the increase of E2 was accompanied by up-regulated hepatic estrogenic receptor alpha (ER alpha) and vitellogenin (VTG1 and VTG3) expression. In males, the elevation of the T level is consistent with the up-regulation of cytochrome P450 c17 alpha-hydroxylase, 17, 20-lase (CYP17) and the down-regulation of cytochrome P450 aromatase A (CYP19A). The present study demonstrated that waterborne exposure to 6:2 FTOH alter plasma sex hormone levels and the ratio of T/E2, as well as the transcriptional profiles of some genes in the HPG axis and liver. The results suggested that FTOHs may disturb fish reproduction through endocrine disrupted activity. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The eleven-nineteen lysine-rich leukemia (ELL) gene undergoes translocation and fuses in-frame to the multiple lineage leukemia gene in a substantial proportion of patients suffering from acute forms of leukemia. Studies show that ELL indirectly modulates transcription by serving as a regulator for transcriptional elongation as well as for p53, U19/Eaf2, and steroid receptor activities. Our in vitro and in vivo data demonstrate that ELL could also serve as a transcriptional factor to directly induce transcription of the thrombospondin-1 (TSP-1) gene. Experiments using ELL deletion mutants established that full-length ELL is required for the TSP-1 up-regulation and that the trans-activation domain likely resides in the carboxyl terminus. Moreover, the DNA binding domain may localize to the first 45 amino acids of ELL. Not surprisingly, multiple lineage leukemia-ELL, which lacks these amino acids, did not induce expression from the TSP-1 promoter. In addition, the ELL core-response element appears to localize in the -1426 to -1418 region of the TSP-1 promoter. Finally, studies using zebrafish confirmed that ELL regulates TSP-1 mRNA expression in vivo, and ELL could inhibit zebrafish vasculogenesis, at least in part, through up-regulating TSP-1. Given the importance of TSP-1 as an anti-angiogenic protein, our findings may have important ramifications for better understanding cancer.