199 resultados para Antibody Diversity
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
A selenium-containing catalytic antibody (Se-4A4), prepared by converting reactive serine residues of a monoclonal antibody (4A4) raised against a GSH derivative into selenocysteines, acts as a mimic of cytosolic glutathione peroxidase (cGPX). To clarify the mechanism of action of this catalytic antibody, detailed studies on kinetic behaviour and biological activity were carried out. A rate of acceleration (k(cat)/K-m/k(uncat)) 10(7)-fold that of the uncatalytic reaction is observed. Under similar conditions, the turnover number (k(cat)) of Se-4A4 is 42% of that of the natural rabbit liver cGPX. The Se-4A4 reaction involves a Ping Pong mechanism, which is the same as that of the natural cGPX. The selenocysteine residue is located in the binding site of the antibody and is shown to be crucial for this activity. Of the thiol compounds tested, only GSH is able to serve as substrate for Se-4A4. It was demonstrated, using the free-radical-damage system (hypoxanthine/xanthine oxidase) of cardiac mitochondria, that Se-4A4 can protect mitochondria from free-radical damage at least 10(4)-fold more effectively than the natural cGPX.
Resumo:
We present a slice-sampling method and study the ensemble evolution of a large finite nonlinear system in order to model materials failure. There is a transitional region of failure probability. Its size effect is expressed by a slowly decaying scaling law. In a meso-macroscopic range (similar to 10(5)) in realistic failure, the diversity cannot be ignored. Sensitivity to mesoscopic details governs the phenomena. (C) 1997 Published by Elsevier Science B.V.
Resumo:
A parallel plate flow chamber was used to study the interaction force between human IgG (immobilized on a chip surface as ligand) and goat anti-human IgG (immobilized on microspheres surface as receptor). First, it was demonstrated that the binding force between the microspheres and the chip surface came from the bio-specific interaction between the antigen and the antibody. Secondly, it was obtained that the critical shear rate to detach microspheres from the chip surface increases with the ligand surface concentration. Finally, two models to estimate the antigen-antibody bond strength considering bonds' positions were proposed and analyzed.
Resumo:
It is to investigate molecule interactions between antigen and antibody with ellipsometric imaging technique and demonstrate some features and possibilities offered by applications of the technique. Molecule interaction is an important interest for molecule biologist and immunologist. They have used some established methods such as immufluorcence, radioimmunoassay and surface plasma resonance, etc, to study the molecule interaction. At the same time, experimentalists hope to use some updated technique with more direct visual results. Ellipsometric imaging is non-destructive and exhibits a high sensitivity to phase transitions with thin layers. It is capable of imaging local variations in the optical properties such as thickness due to the presence of different surface concentration of molecule or different deposited molecules. If a molecular mono-layer (such as antigen) with bio-activity were deposited on a surface to form a sensing surface and then incubated in a solution with other molecules (such as antibody), a variation of the layer thickness when the molecules on the sensing surface reacted with the others in the solution could be observed with ellipsometric imaging. Every point on the surface was measured at the same time with a high sensitivity to distinguish the variation between mono-layer and molecular complexes. Ellipsometric imaging is based on conventional ellipsometry with charge coupled device (CCD) as detector and images are caught with computer with image processing technique. It has advantages of high sensitivity to thickness variation (resolution in the order of angstrom), big field of view (in square centimeter), high sampling speed (a picture taken within one second), and high lateral resolution (in the order of micrometer). Here it has just shown one application in study of antigen-antibody interaction, and it is possible to observe molecule interaction process with an in-situ technique.
Resumo:
One of existing strategies to engineer active antibody is to link VH and VL domains via a linker peptide. How the composition, length, and conformation of the linker affect antibody activity, however, remains poorly understood. In this study, a dual approach that coordinates molecule modeling, biological measurements, and affinity evaluation was developed to quantify the binding activity of a novel stable miniaturized anti-CD20 antibody or singlechain fragment variable (scFv) with a linker peptide. Upon computer-guided homology modeling, distance geometry analysis, and molecular superimposition and optimization, three new linker peptides PT1, PT2, and PT3 with respective 7, 10, and 15 residues were proposed and three engineered antibodies were then constructed by linking the cloned VH and VL domains and fusing to a derivative of human IgG1. The binding stability and activity of scFv-Fc chimera to CD20 antigen was quantified using a micropipette adhesion frequency assay and a Scatchard analysis. Our data indicated that the binding affinity was similar for the chimera with PT2 or PT3 and ~24-fold higher than that for the chimera with PT1, supporting theoretical predictions in molecular modeling. These results further the understanding in the impact of linker peptide on antibody structure and activity.