416 resultados para Anodic Electrode

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

60.00% 60.00%

Publicador:

Resumo:

本文对无介体双室微生物燃料电池的产电性能进行了初步研究,并根据不同运行阶段产电性能的优劣,对其中微生物的差异性进行了比较分析。全文分为两个部分: 第一部分:以乙酸钠为阳极原料构建双室微生物燃料电池(MFC),研究不同阴极受体、外接电阻、乙酸钠浓度和pH等因素对电池产电性能的影响,研究结果表明:在500mL的阴阳极反应体系中,选用乙酸钠作为阳极底物,质量浓度为6.46 g/L, pH 7.0,接入500Ω外电阻,阴极电子受体选择高锰酸钾的情况下,微生物燃料电池产电性能最好,最大电功率密度达到294.72 mW/m2,库伦效率能达到25.87%。在确定最适外接电阻阻值的同时对MFC内阻进行测定,阻值为871.87Ω。 第二部分:微生物燃料电池运行中,比较以厌氧污泥作为接种源的第一阶段和只接入附着有大量微生物电极的第二阶段的产电性能,得出第二阶段产电性能优于第一阶段,最大电功率密度达到353.57mW/m2,比第一阶段提高58.85 mW/m2;库伦效率为39.35%,增幅达52%左右;针对微生物燃料电池运行过程中,底物CH3COONa可能存在其它的代谢途径,本实验进行了第二阶段产电性能与CH3COONa消耗率关系以及阳极液面上方气体成分和含量的研究,发现第二阶段50h前CH3COONa的大量消耗主要用于微生物的生长,在整个运行过程中,阳极液面上方含有CH4和CO2;对气体测定的同时还发现,振荡能增强电功率密度的输出;通过对电极上和污泥中微生物差异性分析得出,δ-变形菌纲、β-变形菌纲和拟杆菌门的菌种更适应微生物燃料电池的运行环境,能在电极上大量富集,提高电池的产电性能,只接入附着有大量微生物的电极能有效降低热袍菌纲的菌种数量,降低了CH3COONa的无为消耗,有效提高了电池的库伦效率。 Electricity production in the mediator-less two-chambered microbial fuel cell(MFC) was researched. Based on the result in the different operation phase in the MFC, the microbial diversity was analysed. The paper involved two parts: Part 1: A two-chambered microbial fuel cell (MFC) was constructed with high-concentration sodium acetate as fuel in the anode. The influence of different electron acceptors in the cathode, external resistance value, pH value and concentration of sodium acetate on electricity generation in MFC was investigated. The result showed that the maximum power density of 294.72 mW/m2 and the coulombic efficiency of 25.87% was achieved at sodium acetate concentration of 6.46 g/L, pH 7.0, external resistance 500Ωin the anode and when using potassium permanganate as electron acceptor in the cathode. While decided the value of resistor, we found that shaking has effect on electricity production in the MFC. Part 2: Comparing the electricity production in different operation phases when using anaerobic sludge as inoculum in the first phase and microbes in the anodic electrode as inoculum in the second phase, the result showed that electricity production in the second phase was more than that in the first phase, the maximum power density of 353.57 mW/m2 and the coulombic efficiency of 39.35% was achieved, 58.85 mW/m2 and 52% more than that in the first phase, respectively. According to the fact that CH3COONa might be metabolized in other pathway in the running process in the MFC, we determining the relationship between electricity production and CH3COONa consumption, and the gas content in the anode, we found that CH3COONa was mainly used for microbe growth before 50h, and the anode contained CH4 and CO2. At the same time, we found that shaking could improve power density. The analysis on diversity of microbe in the anodic electrode and anaerobic sludge showed that δ-proteobacterium, β-proteobacterium and Bacteroidetes adapted themselves to the running environment of MFC. The anode could enrich them to improve the electricity production while reduced the quantity of Thermotogales, which were obligately anaerobic organotrophs with a fermentative metabolism, to increase the coulombic efficiency effectively.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To improve the reproducibility, stability, and sensitivity of bismuth film electrode (BiFE), we studied the performances of a mixed coating of two cation-exchange polymers, Nafion (NA) and poly(sodium 4-styrenesulfonate) (PSS), modified glassy carbon BiFE (GC/NA-PSS/BiFE). The characteristics of GC/NA-PSS/BiFE were investigated by scanning electron microscopy and cyclic voltammetry. Various parameters were studied in terms of their effect on the anodic stripping voltarnmetry (ASV) signals. Under optimized conditions, the limits of detection were 71 ng L-1 for Cd(II) and 93 ng L-1 for Pb(II) with a 10 min preconcentration. The results exhibited that GC/NA-PSS/BiFE can be a reproducible and robust toot for monitor of trace metals by ASV rapidly and environmentally friendly, even in the presence of surface-active compounds.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The anodic voltammetric behavior of ethacridine (EAD) in the presence of various electrolytes was studied by using linear potential sweep voltammetry, differential-pulse voltammetry and cyclic voltammetry at a glassy carbon electrode. In the medium of 0.1 mol/L NaOH solution, an oxidative peak of ethaeridine was obtained. The peak potential is at about 0.40 V (vs. Ag/AgCl). The peak current is linearly increased with the concentration of ethaeridine over the range of 0.05 similar to 80 mg/L. The method has been used for the direct determination of ethacridine in injection. The relative standard deviation (n = 10) is 1.4% similar to 2.7%. The recoveries of ethacridine in urine samples are 89% similar to 95%. The mechanism of the electrode reaction was also discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The anodic voltammetric behavior of medecamycin (MD) in the presence of various electrolytes was studied by linearsweep voltammetry, differential-pulse voltammetry and cyclic voltammetry at a glassy carbon electrode. In phosphate buffer solutions (pH = 9.4), MD is oxidized irreversibly. The peak potential is at about +0.75 V (vs.Ag/AgCl). The height of the peak is linearly increased with the concentration of MD over the range of 5 x 10(-5) similar to 1 x 10(-1) g/L. The method has been used for the direct determination of MD in tablets. The relative standard deviation (n = 10) is 1.8%. The recoveries of MD in urine samples are in the range of 95% similar to 115%.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The anodic voltammetric behavior of inosine (I) was investigated by linar-sweep voltammetry, differential-pulse voltammetry and cyclic voltammetry at a glassy carbon electrode. In a medium of 0.1 mol/L N2HPO4, inosine showed a well defined anodic peak. The peak potential was about 1.42 V (vs. Ag/AgCl). A linear relationship held between the peak current and the concentration of inosine in the rang of 5 x 10(-4) similar to 8 x 10(-2) g/L. The peak potential decreased with the decrease of the acidity of the solution. The four anodic peaks of inosine with hypoxanthine, xanthine and uric acid were obtained. Their peak potentials were about at 1.42, 1.07, 0.72 and 0.26 Vt vs. Ag/AgCl). The method has been used for the direct determination of inosine in injections. Recoveries of inosine in urine samples were about 85%. Experimental result proved that the electrode reaction was diffusion-controlled and irreversible.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The anodic voltammetric behavior of dipyridamole (DPM) in the presence of various electrolytes was studetd by direct-current voltammetry, differential-pulse voltammetry and cyclic voltammetry at a glassy carbon electrode. In a medium of 0.01 mol/L HCl, an oxidative peak of dipyridamole was obtained. The peak potential is at about 0.62 V(vs.Ag/AgCl). The peak current is linearly increased with the concentration of dipyridamole over the range of 0.05 similar to 10 mg/L. The method has been used for the direct determination of dipyridamole in tablets. The recoveries of dipyridamole in urine samples are 89%. Experimental results proved that the electrode reaction was diffustion controlled and irreversible.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The anodic oxidation kinetics of hydrazine (N2H4) on glassy carbon (GC) electrode was examined by cyclic voltammetry, rotating disk and ring-disc electrode techniques. The possible mechanisms of N2H4 oxidation in both aqueous and nonaqueous solutions are proposed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The electrocatalytic oxidation of hydrazine (N2H4) on a glassy carbon electrode (GC) modified by monolayer and polymer films of cobalt protoporphyrin dimethyl ester (CoPP) has been studied. Both the monolayer and polymer films of CoPP are very active to the anodic oxidation of N2H4. The activity of CoPP for the anodic oxidation of N2H4 is dependent on the pH of the solution, and the thickness of polymerized CoPP film. The oxidation kinetics were examined by methods of cyclic voltammetry, rotating disc electrodes and steady-state polarization measurement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel method for preparing nano-supercapacitor arrays, in which each nano-supercapacitor consisted of electropolymerized Polypyrrole (PPy) electrode / porous TiO2 separator / chemical polymerized PPy electrode, was developed in this paper. The nano-supercapacitors were fabricated in the nano array pores of anodic aluminum oxide template using the bottom-up, layer-by-layer synthetic method. The nano-supercapacitor diameter was 80 nm, and length 500 nm. Based on the charge/discharge behavior of nano-supercapacitor arrays, it was found that the PPy/TiO2/PPy array supercapacitor devices performed typical electrochemical supercapacitor behavior. The method introduced here may find application in manufacturing nano-sized electrochemical power storage devices in the future for their use in the area of microelectronic devices and microelectromechanical systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article reports on the performance of a bismuth-coated carbon microdisk electrode (BiFμE) for the determination of trace heavy metals by anodic stripping voltammetry (ASV). The BiFμE was prepared by electrodeposition of a metallic bismuth film onto the microdisk, by applying an in-situ electroplating procedure. To test the performance of the BiFμE, ASV measurements were performed on synthetic solutions containing Cd2+, Pb2+, and Cu2+ as target ions. The results indicated that cadmium and lead gave well-defined ASV peaks with no interference, and their quantitative determination could be carried out straightforwardly. In particular, linear calibration curves over the range 5.0 x 10-8-1.0 x 10-6M for both ions, and detection limits of 7.8 and 2.9 nM, for cadmium and lead, respectively, after applying a 60 sec preconcentration step, were obtained. The reproducibility was also satisfactory, the relative standard deviation (RSD) being within 2.5% for both ions. Copper, instead, gave an ASV response that. in most experimental conditions, overlapped with that of bismuth. This circumstance made the determination of copper at the BiFμE difficult. Since the latter element could be detected reliably at the uncoated carbon microdisk electrode (CμE), both BiFμE and CμE were employed, respectively, for the determination of lead and copper ions in drinking water, wine, and tomato sauce.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It was reported for the first time that the electrocatalytic activity of the Carbon-supported Pd-Ir (Pd-Ir/C) catalyst with the suitable atomic ratio of Pd and Ir for the oxidation of formic acid in the direct formic acid fuel cell (DFAFC) is better than that of the Carbon-supported Pd (Pd/C) catalyst, although Ir has no electrocatalytic activity for the oxidation of formic acid. The potential of the anodic peak of formic acid at the Pd-Ir/C catalyst electrode with the atomic ratio of Pd and Ir = 5:1 is 50 mV more negative than that and the peak current density is 13% higher than that at the Pd/C catalyst electrode.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new kind of bismuth film modified electrode to sensitively detect trace metal ions based on incorporating highly conductive ionic liquids 1-butyl-3-methyl-imidazolium hexafluorophosphate (BMIMPF6) in solid matrices at glassy carbon (GC) was investigated. Poly(sodium 4-styrenesulfonate) (PSS), silica, and Nafion were selected as the solid matrices. The electrochemical properties of the mixed films modified GC were evaluated. The electron transfer rate of Fe(CN)(6)(4-)/Fe(CN)(6)(3-) can be effectively improved at the PSS-BMIMPF6 modified GC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon modified by the reduction of aromatic diazonium derivatives was first used as electrode for the electrochemical stripping analysis of heavy metals. As a model, the glassy carbon electrode was modified with benzoic acid by electrochemical reduction of diazobenzoic acid, and the resulting modified electrodes were used for determination of Cd2+ and Pb2+. The anodic peak currents of cadmium and lead at the benzoic acid-modified glassy carbon electrode are 7.2 and 6 times of that at the bare glassy carbon electrode. A linear response was observed for Pb2+ and Cd2+ in the range of 0.5-50 mu g/l.