2 resultados para Amiloride

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many ionotropic receptors are modulated by extracellular H+. So far, few studies have directly addressed the role of such modulation at synapses. In the present study, we investigated the effects of changes in extracellular pH on glycinergic miniature inhibitory postsynaptic currents (mIPSCs) as well as glycine-evoked currents (I-Gly) in mechanically dissociated spinal neurons with native synaptic boutons preserved. H+ modulated both the mIPSCs and I-Gly, biphasically, although it activated an amiloride-sensitive inward current by itself. Decreasing extracellular pH reversibly inhibited the amplitude of the mIPSCs and I-Gly, while increasing external pH reversibly potentiated these parameters. Blockade of acid-sensing ion channels (ASICs) with amiloride, the selective antagonist of ASICs, or decreasing intracellular pH did not alter the modulatory effect of H+ on either mIPSCs or I-Gly, H+ shifted the EC50 of the glycine concentration-response curve from 49.3 +/- 5.7 muM at external pH 7.4 to 131.5 +/- 8.1 muM at pH 5.5, without altering the Cl- selectivity of the glycine receptor (GlyR), the Hill coefficient and the maximal I-Gly, suggesting a competitive inhibition of I-Gly by H+. Both Zn2+ and H+ inhibited I-Gly. However, H+ induced no further inhibition of I-Gly in the presence of a saturating concentration of Zn2+. In addition, H+ significantly affected the kinetics of glycinergic mIPSCs and I-Gly. It is proposed that H+ and/or Zn2+ compete with glycine binding and inhibit the amplitude of glycinergic mIPSCs and I-Gly. Moreover, binding of H+ induces a global conformational change in GlyR, which closes the GlyR Cl- channel and results in the acceleration of the seeming desensitization of IGly as well as speeding up the decay time constant of glycinergic mIPSCs. However, the deprotonation rate is faster than the unbinding rate of glycine from the GlyR, leading to reactivation of the undesensitized GlyR after washout of agonist and the appearance of a rebound I-Gly. H+ also modulated the glycine cotransmitter, GABA-activated current (I-GABA). Taken together, the results support a 'conformational coupling' model for H+ modulation of the GlyR and suggest that W may act as a novel modulator for inhibitory neurotransmission in the mammalian spinal cord.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The characterization of acid-sensing ion channel (ASIC)-like currents has been reported in hippocampal neurons in primary culture. However, it is suggested that the profile of expression of ASICs changes in culture. In this study, we investigated the properties of proton-activated current and its modulation by extracellular Ca2+ and Zn2+ in neurons acutely dissociated from the rat hippocampal CA1 using conventional whole-cell patch-clamp recording. A rapidly decaying inward current and membrane depolarization was induced by exogenous application of acidic solution. The current was sensitive to the extracellular proton with a response threshold of pH 7.0-6.8 and the pH(50) Of 6.1, the reversal potential close to the Na+ equilibrium potential. It had a characteristic of acid-sensing ion channels (ASICs) as demonstrated by its sensitivity to amiloride (IC50 = 19.6 +/- 2.1 muM). Either low [Ca2+](0) or high [Zn2+](0) increased the amplitude of the current. All these characteristics are consistent with a current mediated through a mixture of homomeric ASIC1a and heteromeric ASIC1a + 2a channels and closely replicate many of the characteristics that have been previously reported for hippocampal neurons cultured for a week or more, indicating that culture artifacts do not necessarily flaw the properties of ASICs. Interestingly, we found that high [Zn2+] (>10(-4) M) slowed the decay time constant of the ASIC-like current significantly in both acutely dissociated and cultured hippocampal neurons. In addition, the facilitating effects of low [Ca2+](0) and high [Zn2+](0) on the ASIC-like current were not additive. Since tissue acidosis, extracellular Zn elevation and/or Ca2+ reduction occur concurrently under some physiological and/or pathological conditions, the present observations suggest that hippocampal ASICs may offer a novel pharmacological target for therapeutic invention. (C) 2004 Elsevier B.V. All rights reserved.