27 resultados para Alkenes.

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The preparation of light alkenes by the gas phase oxidative cracking (GOC) or catalytic oxidative cracking (COC) of model high hydrocarbons ( hexane, cyclohexane, isooctane and decane in the GOC process and hexane in the COC process) was investigated in this paper. The selection for the feed in the GOC process was flexible. Excellent conversion of hydrocarbons ( over 85%) and high yield of light alkenes ( about 50%) were obtained in the GOC of various hydrocarbons including cyclohexane at 750 degreesC. In the GOC process, the utilization ratio of the carbon resources was high; CO dominated the produced COX (the selectivity to CO2 was always below 1%); and the total selectivity to light alkenes and CO was near or over 70%. In the COC of hexane over three typical catalysts (HZSM-5, 10% La2O3/HZSM-5 and 0.25% Li/MgO), the selectivity to COX was hard to decrease and the conversion of hexane and yield of light alkenes could not compete with those in the GOC process. With the addition of H-2 in the feed, the selectivity to COX was reduced below 5% over 0.1% Pt/HZSM-5 or 0.1% Pt/MgAl2O4 catalyst. The latter catalyst was superior to the former catalyst due to its perfect performance at high temperature, and with the latter, excellent selectivity to light alkenes ( 70%) and the conversion of hexane (92%) were achieved at 850 degreesC ( a yield of light alkenes of 64%, correspondingly).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Naphthene is generally considered difficult to convert in traditional pyrolysis, but the ring rupture becomes fairly easy with the presence of oxygen in the gas phase oxidative cracking of the model compound, cyclohexane. About 86.8% conversion of cyclohexane, 43.7% yield of light alkenes, 6.6% yield of benzene and 14.3% yield of CO could be obtained at 750 degreesC, at which temperature the pyrolysis of cyclohexane was negligible, while at 850 degreesC, the total yield of alkenes, benzene and CO was as high as 80% (50%, 12% and 18%, respectively) with 98% conversion of cyclohexane. The gas phase oxidative cracking process could be run in an autothermal way (cyclohexane/O-2 mole ratio of 0.69-0.8 in theory), which would minimize energy consumption and capital costs of the whole process. CO prevailed in the produced CO, and the yield Of CO2 was always below 1%, which means about 90% Of CO2 emission by fuel burning in pyrolysis would be saved. The gas phase oxidative cracking process appears to be an environmentally benign and efficient route for light alkene production with naphthene rich feedstocks. (C) 2004 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanocene complexes combined with nanometer-size sodium hydride are extremely active and selective catalysts for the hydrogenation of terminal alkenes under normal pressure. The initial turnover frequencies (TOFinitial) may reach 100-300 s(-1) in the hydrogenation of 1-hexene. The highest catalytic efficiency turnover (TO) reaches 1.5 x 10(5) in 2 h for the hydrogenation of styrene. These catalytic systems exhibit specific selectivity toward alkene substrates. Only terminal alkenes can be hydrogenated. No isomerization of carbon-carbon double bonds occurs during hydrogenation. A suitable substituent on the cyclopentadienyl ring of titanocene and the use of nanometric sodium hydride are key factors in the high efficiency of these catalytic systems. (C) 2002 Elsevier Science.