2 resultados para Alcohol Safety Action Project--Phoenix, Ariz.
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
In the paper through extensive study and design, the technical plan for establishing the exploration database center is made to combine imported and self developed techniques. By research and repeated experiment a modern database center has been set up with its hardware and network having advanced performance, its system well configured, its data store and management complete, and its data support being fast and direct. Through study on the theory, method and model of decision an exploration decision assistant schema is designed with one decision plan of well location decision support system being evaluated and put into action. 1. Study on the establishment of Shengli exploration database center Research is made on the hardware configuration of the database center including its workstations and all connected hardware and system. The hardware of the database center is formed by connecting workstations, microcomputer workstations, disk arrays, and those equipments used for seismic processing and interpretation. Research on the data store and management includes the analysis of the contents to be managed, data flow, data standard, data QC, data backup and restore policy, optimization of database system. A reasonable data management regulation and workflow is made and the scientific exploration data management system is created. Data load is done by working out a schedule firstly and at last 200 more projects of seismic surveys has been loaded amount to 25TB. 2. Exploration work support system and its application Seismic data processing system support has the following features, automatic extraction of seismic attributes, GIS navigation, data order, extraction of any sized data cube, pseudo huge capacity disk array, standard output exchange format etc. The prestack data can be accessed by the processing system or data can be transferred to other processing system through standard exchange format. For supporting seismic interpretation system the following features exist such as auto scan and store of interpretation result, internal data quality control etc. the interpretation system is connected directly with database center to get real time support of seismic data, formation data and well data. Comprehensive geological study support is done through intranet with the ability to query or display data graphically on the navigation system under some geological constraints. Production management support system is mainly used to collect, analyze and display production data with its core technology on the controlled data collection and creation of multiple standard forms. 3. exploration decision support system design By classification of workflow and data flow of all the exploration stages and study on decision theory and method, target of each decision step, decision model and requirement, three concept models has been formed for the Shengli exploration decision support system including the exploration distribution support system, the well location support system and production management support system. the well location decision support system has passed evaluation and been put into action. 4. Technical advance Hardware and software match with high performance for the database center. By combining parallel computer system, database server, huge capacity ATL, disk array, network and firewall together to create the first exploration database center in China with reasonable configuration, high performance and able to manage the whole data sets of exploration. Huge exploration data management technology is formed where exploration data standards and management regulations are made to guarantee data quality, safety and security. Multifunction query and support system for comprehensive exploration information support. It includes support system for geological study, seismic processing and interpretation and production management. In the system a lot of new database and computer technology have been used to provide real time information support for exploration work. Finally is the design of Shengli exploration decision support system. 5. Application and benefit Data storage has reached the amount of 25TB with thousand of users in Shengli oil field to access data to improve work efficiency multiple times. The technology has also been applied by many other units of SINOPEC. Its application of providing data to a project named Exploration achievements and Evaluation of Favorable Targets in Hekou Area shortened the data preparation period from 30 days to 2 days, enriching data abundance 15 percent and getting information support from the database center perfectly. Its application to provide former processed result for a project named Pre-stack depth migration in Guxi fracture zone reduced the amount of repeated process and shortened work period of one month and improved processing precision and quality, saving capital investment of data processing of 30 million yuan. It application by providing project database automatically in project named Geological and seismic study of southern slope zone of Dongying Sag shortened data preparation time so that researchers have more time to do research, thus to improve interpretation precision and quality.
Resumo:
The unique geologic, geomorphic and climatic conditions of southeast Tibet have made the region to develop the multi-style and frequently occurring geologic hazards, especially the collapses and landslides and debris flows along the section of Ranwu-Lulang in Sichuan-Tibet highway. However, most of those geologic hazards have close relationship with the loose accumulations. That is, the loose accumulations are the main carrier of most geologic hazards. Thereof, the huge-thick accumulations along the highway is regarded as the objective in the thesis to study the geologic background, hazarding model and mitigation methods comprehensively, based on the multi-disciplinary theories and former materials. First of all, in the paper, based on field engineering geologic investigations, the genetic type and the characteristics of spatiotemporal distribution of the huge-thick loose accumulations along the highway, have been analysized from the factors of regional geology and geomorphy and climate, as well as the coupling acting of those factors with inoculation and eruption of the loose accumulations geologic hazards. The huge-thick loose accumulations has complex genetic types and specific regulations of spatiotemporal distribution, closely controlled by the outer environment of the region. The accumulations are composed of earth and boulder, with disorder structure and poor sorting, specific forming environments and depositing conditions. And its physical and mechanic properties are greatly distinguished from rock and common earth inland. When Sichuan-Tibet highway was firstly constructed along the north bank of Purlung Tsangpo River, the huge-thick loose accumulations was cut into many high and steep slopes. Through the survey to the cut-slopes and systematic investigation to their failures, the combination of height and angle of the accumulations slope has been obtained. At the same time, the types of genetic structure of those cut-slopes are also analysized and concluded, as well as their failure models. It is studied in the paper that there are piaster, duality, multielement and complexity types in genetic structure, and rip-dump-repose, rip-shear-slip and weathering-flake types in failure models. Moreover, it is briefly introduced present engineering performance methods and techniques dealing with the deformation and failure of the accumulations cut-slope. It is also suggested that several new techniques of slope enforcement and the method of landslide and rockfall avoiding should be applied. The research of high and steep cut-slope along the highway has broadened the acknowledgement of the combination of cut-slope height and angle. Especially, the dissertation also has made the monographic studies about the geologic background and hazarding models and prevention methods of some classic but difficult accumulations geologic hazards. They are: (1) Research of the engineering geologic background of the 102 landslide group and key problems about the project of tunnel. The 102 landslide group is a famous accumulational one composed of glacial tills and glaciofuvial deposit. The tunnel project is a feasible and optional one which can solve the present plight of “sliding after just harnessing” in the 102 section. Based on the glacial geomorphy and its depositing character, distribution of seepage line, a few drillhole materials and some surveying data, the position of contact surface between gneiss and accumulations has been recognized, and the retreating velocities of three different time scales (short, medium and long term) have been approximately calculated, and the weathering thickness of gneiss has also been estimated in the paper. On the basis of above acknowledgement, new engineering geomechnic mode is established. Numerical analysis about the stability of the No.2 landslide is done by way of FLAC program, which supplies the conclusion that the landslide there develops periodically. Thereof, 4 projects of tunnel going through the landslide have been put forwards. Safety distance of the tunnel from clinohefron has been numerically analysized. (2) Research of the geologic setting and disaster model and hazard mitigation of sliding-sand-slope. From the geologic setting of talus cone, it is indicated that the sliding-sand-slope is the process of the re-transportation and re-deposit of sand under the gravity action and from the talus cone. It is the failure of the talus cone essentially. The layering structure of the sliding-sand-slope is discovered. The models of movement and failure of the sliding-sand-slope has been put forwards. The technique, “abamurus+grass-bush fence+degradable culture pan”, is suggested to enforcement and green the sliding-sand-slope. (3) Characteristics and hazarding model and disaster mitigation of debris flow. The sources of solid material of three oversize debris flows have been analysized. It is found that a large amount of moraine existing in the glacial valley and large landslide dam-break are the two important features for oversize debris flow to be taken place. The disaster models of oversize and common debris flows have been generalized respectively. The former model better interpret the event of the Yigong super-large landslide-dam breaking. The features of common debris flow along the highway section, scouring and silting and burying and impacting, are formulated carefully. It is suggested that check dam is a better engineering structure to prevent valley from steeply scouring by debris flow. Moreover, the function of check dam in enforcing the slope is numerically calculated by FLAC program. (4) Songzong ancient ice-dammed lake and its slope stability. The lacustrine profile in Songzong landslide, more than 88 meters thick, is carefully described and measured. The Optical Simulated Luminescence (OSL) ages in the bottom and top of the silty clay layer are 22.5±3.3 kaB.P., 16.1±1.7 kaB.P., respectively. It is indicated by the ages that the lacustrine deposits formed during the Last Glacial Maximum ranging from 25ka B.P. to 15ka B.P. The special characteristics of the lacustrine sediment and the ancient lake line in Songzong basin indicated that the lacustrine sediment is related to the blocking of the Purlung Tsangpo River by the glacier in Last Glacial Maximum from Dongqu valley. The characteristics of the lacustrine profile also indicate that the Songzong ice-dammed lake might run through the Last Glacial Maximum. Two dimensional numerical modeling and analysis are done to simulate the slope stability under the conditions of nature and earthquake by FLAC program. The factor of safety of the lacusrtine slope is 1.04, but it will take place horizontal flow under earthquake activity due to the liquefaction of the 18.33 m silt layer. The realign to prevent the road from landslide is suggested.