2 resultados para Alabama claims.

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The a-decay half-lives of a set of superheavy nuclear isotope chain from Z = 105 to 120 have been analyzed systematically within the WKB method, and some nuclear structure features are found. The decay barriers have been determined in the quasi-molecular shape path within the Generalized Liquid Drop Model (GLDM) including the proximity effects between nucleons in a neck and the mass and charge asymmetry. The results are in reasonable agreement with the published experimental data for the alpha decay half-lives of isotopes of charge 112, 114, and 116, of the element 294118 and of some decay products. A comparison of present calculations with the results by the DDM3Y effective interaction and by the Viola-Seaborg Sobiczewski (VSS) formulae is also made. The experimental a decay half lives all stand in between the GLDM calculations and VSS formula results. This demonstrates the possibility of these models to provide reasonable estimates for the half-lives of nuclear decays by a emissions for the domain of SHN. The half-lives of these new nuclei are thus well tested from the reasonable consistence of the macroscopic, the microscopic, the empirical formulae and the experimental data. This also shows that the present data of SHN themselves are consistent. It could suggest that the present experimental claims on the existence of new elements Z = 110 similar to 118 are reliable. It is expected that greater deviations of a few SHN between the data and the model may be eliminated by further improvements on the precision of the measurements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on the principle and method of sequence, the author describes the sequence-filling model of the rifting basin of Xujiaweizi and its gas exploration potential. The object of this paper belongs to the area around Shengping-Wangjiatun anticline. Its srtatigraphy includes Huoshiling Formation (neutral and basic volcanic rocks), Shahezi Formation (coal bedding and mud and some sandstone) and Yingcheng Formation from bottom to top. These stratigraphy units are defined by author as mesosequences respectively. The author emphasizes that the main control factors of sequence change with the types of basin and stage of basin. So the sequence is researched according to the types of basin. This viewpoint is very new, and it is consistent with the principle of sequence. Volcanic action is very frequent and acute, topography difference is obvious. Between the volcanic events, Shahezi Formation is formed, which mainly consists-of sedimentary rocks. Based on the datum from seismic section and drilling core and well-logging, the author analyzes the single unit and unit set and system tract and sedimentary fancies, then, according to the accommodation space change and marking of sequence boundary, Shahezi Formation is divided into two Third-scale sequences. The sedimentary fancies and depth distribution are described. The author also pointed out that the volcanic rocks consume the accommodation space, so volcanic rocks can influence the development of sequence. Based on the concept of accommodation space, the author put volcanic rocks into sequence frame, which normally consists of sedimentary rocks. The topography of volcanic is controlled by lithology of volcanic rocks, the pattern of volcanic eruption and the topography before volcanic eruption. The topography of volcanic can influence sedimentation and the filling pattern of sedimentary rocks. The author describes the composition and lithology fancies and depth distribution of volcanic rocks. The volcanic rocks and Volcanic building, volcanic structure is recognized on seismic section. The author paid a special attention to the relationship between sedimentation and volcanism. Finally, the author analyses the combination of source-reservoir-cover unit in sequence frame. The mudstone of Shahezi Formation has a great depth, the Kerogene in it belongs to type II and III, which tends to produce gas. The Yingcheng Formation lies between Shahezi Formation and Denglouku Formation, belonging to good reservoir. The volcanic rocks of Huoshiling Formation often formed high building, which can capture the gas produced from Shahezi Formation. The stratigraphy of rifting basin of Xujiaweizi has the great potential of gas exploration. This paper claims the following creative points: 1. The author applied the principle and method of sequence to rifting basin, greatly extending its research area and topic issues. 2. The author pointed out that basin of different type and of different stage has a different type of sequence. This is caused by the different main control factors of sequence. 3. Put volcanic rocks into the sequence frame, discussing the probability of regarding the volcanic rocks as the component of sequence, dealing with the relationship between sedimentation and volcanism and its influence to the source-reservoir-cover system. 4. The author pointed out that the filling pattern of rifting basin are determined by the filling pattern of megasequence, whose filling pattern is determined by the filling pattern of system tract and the change of accommodation space.