601 resultados para Al2O3 Korund

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

通过比较Al-Zn合金和Al2O3p/Al-Zn复合材料的激光重熔组织。分析Al2O3颗粒对Al-Zn合金激光快凝组织的影响规律。实验结果表明,Al2O3颗粒可以显著经激光熔区的晶粒。基于凝固界面与颗粒交互的理论分析,给出了晶粒细化的临界条件。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A rectangular structural unit cell of a-Al2O3 is generated from its hexagonal one. For the rectangular structural crystal with a simple interatomic potential [Matsui, Mineral Mag. 58A, 571 (1994)], the relations of lattice constants to homogeneous pressure and temperature are calculated by using Monte-Carlo method at temperature 298K and 0 GPa, respectively. Both numerical results agree with experimental ones fairly well. By comparing pair distribution function, the crystal structure of a-Al2O3 has no phase transition in the range of systematic parameters. Based on the potential model, pressure dependence of isothermal bulk moduli is predicted. Under variation of general strains, which include of external and internal strains, elastic constants of a-Al2O3 in the different homogeneous load are determined. Along with increase of pressure, axial elastic constants increase appreciably, but nonaxial elastic constants are slowly changed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The response of porous Al2O3 to nanoindentation was investigated at microscopic scales (nm-mu m) and under ultra-low loads from 5 to 90 mN with special attention paid to the dependence of the load-depth behaviour to sample porosity. It was found that the load-depth curves manifest local responses typical of the various porous structures investigated. This is particularly clear for the residual deformation after load removal. Similarly, the limited mean pressure of the sample containing small grains and interconnected pores is consistent with its porous structure. By comparison, the samples with larger grain size and various porous structures exhibit higher pressures and smaller residual deformations that can be attributed to the mechanical response of the solid phase. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ceramic/metal interfaces were studied that fail by atomistic separation accompanied by plastic dissipation in the metal. The macroscopic toughness of the specific Ni alloy/Al2O3 interface considered is typically on the order of ten times the atomistic work of separation in mode I and even higher if combinations of mode I and mode II act on the interface. Inputs to the computational model of interface toughness are: (i) strain gradient plasticity applied to the Ni alloy with a length parameter determined by an indentation test, and (ii) a potential characterizing mixed mode separation of the interface fit to atomistic results. The roles of the several length parameters in the strain gradient plasticity are determined for indentation and crack growth. One of the parameters is shown to be of dominant importance, thus establishing that indentation can be used to measure the relevant length parameter. Recent results for separation of Ni/Al2O3 interfaces computed by atomistic methods are reviewed, including a set of results computed for mixed mode separation. An approximate potential fit to these results is characterized by the work of separation, the peak separation stress for normal separation and the traction-displacement relation in pure shearing of the interface. With these inputs, the model for steady-state crack growth is used to compute the toughness of the interface under mode I and under the full range of mode mix. The effect of interface strength and the work of separation on macroscopic toughness is computed. Fundamental implications for plasticity-enhanced toughness emerge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peel test measurements and simulations of the interfacial mechanical parameters for the Al/Epoxy/Al2O3 system are performed in the present investigation. A series of Al film thicknesses between 20 and 250 microns and three peel angles of 90, 135 and 180 degrees are considered. Two types of epoxy adhesives are adopted to obtain both strong and weak interface adhesions. A finite element model with cohesive zone elements is used to identify the interfacial parameters and simulate the peel test process. By simulating and recording normal stress near the crack tip, the separation strength is obtained. Furthermore, the cohesive energy is identified by comparing the simulated steady-state peel force and the experimental result. It is found from the research that both the cohesive energy and the separation strength can be taken as the intrinsic interfacial parameters which are dependent on the thickness of the adhesive layer and independent of the film thickness and peel angle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoindentation tests were carried out to investigate certain elastic properties of Al2O3/SiCp composites at microscopic scales (nm up to mu m) and under ultra-low loads from 3 mN to 250 mN, with special attention paid to effects caused by SiC particles and pores. The measured Young's modulus depends on the volume fraction of SiC particles and on the composite porosity and it can compare with that of alumina. The Young's modulus exhibits large scatters at small penetrations, but it tends to be constant with lesser dispersion as the indentation depth increases. Further analysis indicated that the scatter results from specific microstructural heterogeneities. The measured Young's moduli are in agreement with predictions, provided the actual role of the microstructure is taken into account. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contact pressure of porous Al2O3 probed by nanoindentation was investigated by dimensional analysis with special attention paid to scaling effects in the mechanical behavior. It was found that, for sample containing small grains and interconnected pores, the contact pressure is manifest dominated by bonding strength of the porous alumina. Whereas the samples with coarse grain and various porous structures exhibit higher contact pressures and smaller residual deformations, which can be attributed to the mechanical response of the solid-phase under current limited peak loads.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The response of porous Al2O3 to nanoindentation was investigated at microscopic scales (nm-mu m) and under ultra-low loads from 5 to 90 mN with special attention paid to the dependence of the load-depth behaviour to sample porosity. It was found that the load-depth curves manifest local responses typical of the various porous structures investigated. This is particularly clear for the residual deformation after load removal. Similarly, the limited mean pressure of the sample containing small grains and interconnected pores is consistent with its porous structure. By comparison, the samples with larger grain size and various porous structures exhibit higher pressures and smaller residual deformations that can be attributed to the mechanical response of the solid phase. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gamma-ray irradiation-induced color centers in Al2O3 crystals grown by temperature gradient techniques (TGT) under a strongly reducing atmosphere were studied. The transition F+ -> F takes place during the irradiation process. Glow discharge mass spectroscopy (GDMS) and annealing treatments show that Fe3+ impurity ions are present in the crystals. A composite (F+-Fe3+) defect was presented to explain the origin of the 255 nm band absorption in the TGT-Al2O3 crystals. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report transparent Ni2+-doped ZnO-Al2O3-SiO2 system glass-ceramics with broadband infrared luminescence. After heat-treatment, ZnAl2O4 crystallite was precipitated in the glasses, and its average size increased with increasing heat-treatment temperature. No infrared emission was detected in the as-prepared glass samples, while broadband infrared luminescence centered at 1310 nm with full width at half maximum (FWHM) of about 300 nm was observed from the glass-ceramics. The peak position of the infrared luminescence showed a blue-shift with increasing heat-treatment temperature, but a red-shift with an increase in NiO concentration. The mechanisms of the observed phenomena were discussed. These glass-ceramics are promising as materials for super broadband optical amplifier and tunable laser. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

采用传统熔融冷却的方法制备了透明Ni^2+掺杂ZnO-Al2O3-SiO2系玻璃,结合X-射线、吸收和荧光等测试手段,研究了不同热处理温度对Ni^2+掺杂透明ZnO-Al2O3-SiO2系微晶玻璃光学性质的影响。由X-射线衍射谱鉴定出微晶玻璃中析出的晶相为ZnAl2O4微晶,其尺寸在13nm以下。玻璃中没有发现近红外发光,而在微晶玻璃中存在宽带近红外发光,其可归属为八面体六配位Ni^2+离子的^3T2g(^3F)激发态向^3A2g(^3F)基态的跃迁。随热处理温度升高发光强度增强,而发射峰位则发生蓝移;荧