4 resultados para Airport
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
With development of industry and acceleration of urbanization, problems of air quality as well as their influences on human health have recently been regarded highly by current international communities and governments. Generally, industrializations can result in exhausting of a lot of industry gases and dusts, while urbanization can cause increasing of modern vehicles. Comparing with traditional chemical methods, magnetic method is simple, rapid, exact, low-cost and non-destructive for monitoring air pollution and has been widely applied in domestic and international studies. In this thesis, with an aim of better monitoring air pollution, we selected plants (highroad-side perennial pine trees (Pinus pumila Regel) along a highroad linking Beijing City and the Capital International Airport, and tree bark and tree ring core samples (willow, Salix matsudana) nearby a smelting industry in northeast Beijing) for magnetic studies. With systemic magnetic measurements on these samples, magnetic response mechanism of contamination(e.g. tree leaves, tree ring)to both short- and long-term environmental pollution has been constructed, and accordingly the pollution range, degree and process of different time-scale human activities could be assessed. A series of rock magnetic experiments of tree leaves show that the primary magnetic mineral of leaf samples was identified to be magnetite, in pseudo-single domain (PSD) grain size range of 0.2-5.0 μm. Magnetite concentration and grain size in leaves are ascertained to decrease with increasing of sampling distance to highroad asphalt surface, suggesting that high magnetic response to traffic pollution is localized within a distance of about 2 m away from highroad asphalt surface. On the other hand, highroad-side trees and rainwater can effectively reduce the concentration of traffic pollution-induced particulate matters (PMs) in the atmosphere. This study is the first time to investigate the relationship of smelting factory activities and vicissitudes of environment with tree rings by magnetic methods. Results indicate that magnetic particles are omnipresent in tree bark and trunk wood. Magnetic techniques including low-temperature experiment, successive acquisition of IRM, hysteresis loops and SIRM measurements suggest that magnetic particles are predominated by magnetite in pseudo-single domain state. Comparison of magnetic properties of tree trunk and branch cores collected from different directions and heights implies that collection of magnetic particles depends on both sampling direction and height. Pollution source-facing tree trunk wood contains significantly more magnetic particles than other sides. These indicate that magnetic particles are most likely intercepted and collected by tree bark first, then enter into tree xylem tissues by translocation during growing season, and are finally enclosed in a tree ring by lignifying. Correlation between magnetic properties such as time-dependent SIRM values of tree ring cores and the annual steel yields of the smelting factory is significant. Considering the dependence of magnetic properties in sampling directions, heights, and ring cores, we proposed that magnetic particles in the xylem cannot move between tree rings. Accordingly, the SIRM and some other magnetic parameters of tree ring cores from the source-facing side could be contributed to historical study of atmospheric pollution produced by heavy metal smelting activities, isoline diagrams of SIRM values of all the tree rings indicate that air pollution is increasing worse. We believed that a synthetic rock magnetic study is an effective method for determining concentration and grain size of ferromagnets in the atmospheric PMs, and then it should be a rapid and feasible technique for monitoring atmospheric pollution.
Resumo:
Synthetic Geology Information System (SGIS) is an important constituent part of the theory of Engineering Geomechanics Mate-Synthetic (EGMS), and is the information system more suited for the collection, storage, management, analysis and processing to the information coming from engineering geology,' geological engineering and geotechnical engineering. Its contents involve various works and methods of the investigation, design, and construction in different stages of the geological engineering. Engineering geological and three-dimensional modeling and visualization is the fundamental part of the SGIS, and is a theory, method and technique by which, adopting the computer graphics and image processing techniques, the data derived from engineering geological survey and the calculated results obtained from the geomechanical numerical simulation and analysis are converted to the graphics and images displayed on the computer screen and can be processed interactively. In this paper, the significance and realizing approaches of the three-dimensional modeling and visualization for the complex geological mass in the engineering geology are discussed and the methods of taking advantage of the interpolation and fitting for the scattered and field-surveyed data to simulate the geological layers, such as the topography and earth surface, the groundwater table and the stratum boundary, are researched into. At the mean time, in mind the characteristics of the structure of the basic data for three-dimensional modeling, its visual management can be resolved into the engineering surveyed database management module, plot parameter management module and data output module and the requirement for basic data management can be fulfilled. In the paper, the establishment and development of the three-dimensional geological information system are probed tentatively, and an instance of three-dimensional visual Engineering Distribution Information System (EDIS), theConstruction Management Information System for an airport, in which the functions, such as the real-time browse among the three-dimensional virtual-reality landscapes of the airport construction from start to finish, the information query to the airport facility and the building in the housing district and the recording and playback of the animation sets for the browse and the takeoff and landing of the planes, is developed by applying the component-mode three-dimensional virtual-reality geological information system (GIS) software development kits (SDK), so the three-dimensional visual management platform is provided for the airport construction. Moreover, in the gaper, integrated with the three-dimensional topography visualization and its application in the Sichuan-Tibet Highways, the method of the digital elevation model (DEM) data collection from the topographic maps is described, and the three-dimensional visualization and the roaming about the terrain along the highway are achieved through computer language programming. Understanding to the important role played by the varied and unique topographical condition in the gestation and germination of the highly-dense, frequently-arising and severely-endangered geological hazards can be deepened.
Resumo:
In the engineering reinforcement of-rock and soil mass, engineers must consider how to obtain better reinforcing effect at the cost of less reinforcing expense, which, in fact, is the aim of reinforcement design. In order to accomplish the purpose, they require not only researching the material used to reinforce and its structure, but also taking into account of several important geological factors, such as the structure and property of rock and soil mass. How to improve the reinforcing effect according to engineering geomechanical principle at the respect of the reinforcement of engineering soil and rock mass is studied and discussed in this paper. The author studies the theory, technology and practice of geotechnical reinforcement based on engineering geomechanics, taking example for the soil treatment of Zhengzhou Airport, the effect analysis of reinforcement to the slope on the left bank of Wuqiangxi Hydropower Station and the reinforcing design of the No. 102 Landslide and unique sand-slide slope on the Sichuan-Tibet Highway. The paper is comprised of two parts for the convenience of discussion. In the first part, from the first chapter to the fifth chapter, trying to perform the relevant research and application at the viewpoint of soil mass engineering geomechanics, the author mainly discusses the study of reinforcing soft ground soil through dynamical consolidation and its application. Then, in the second part, from the sixth chapter to the eleventh chapter, the study of new technologies in the rock slope reinforcement and their application are discussed. The author finds that not only better reinforcing effect can be gained in the research where the principle and method of rock mass engineering geomechanics is adopted, but also new reinforcing technologies can be put forward. Zhengzhou Airport is an important one in central plains. It lies on Yellow River alluvial deposit and the structure of stratum is complex and heterogeneous. The area of airport is very large, which can result in differential settlement easily, damage of airport and aircraft accident, whereas, there are no similar experiences to dispose the foundation, so the foundation treatment become a principal problem. During the process of treatment, the method of dynamic compaction was adopted after compared with other methods using the theory of synthetic integration. Dynamic compaction is an important method to consolidate foundation, which was successfully used in the foundation of Zhengzhou Airport. For fill foundation, controlling the thickness of fill so as to make the foundation treatment can reach the design demand and optimum thickness of the fill is a difficult problem. Considering this problem, the author proposed a calculation method to evaluate the thickness of fill. The method can consider not only the self-settlement of fill but also the settlement of the ground surface under applied load so as to ensure the settlement occurred during the using period can satisfy the design demand. It is proved that the method is correct after using it to choose reasonable energy of dynamic compaction to treat foundation. At the same time, in order to examine the effect of dynamic compaction, many monitor methods were adopted in the test such as static loading test, modulus of resilience test, deep pore pressure -test, static cone penetration test and the variation of the pore volume measurement. Through the tests, the author summarized the discipline of the accumulation and dissipation of pore pressure in Yellow River alluvial deposit under the action of dynamic compaction, gave a correct division of the property change of silt and clay under dynamic compaction, determined the bearing capacity of foundation after treatment and weighted the reinforcing effect of dynamic consolidation from the variation of the soil particle in microcosmic and the parameter of soil mass' density. It can be considered that the compactness of soil is in proportion to the energy of dynamic compaction. This conclusion provided a reference to the research of the "Problem of Soil Structure-the Central Problem of Soil Mechanics in 21 Century ". It is also important to strengthen rock mass for water conservancy and electric power engineering. Slip-resistance pile and anchoring adit full of reinforced concrete are usually adopted in engineering experience to strengthen rock mass and very important for engineering. But there also some deficiency such as the weakest section can't be highlighted, the monitor is inconvenient and the diameter of pile and adit is very large etc. The author and his supervisor professor Yangzhifa invented prestressed slip-resistance pile and prestressed anchoring adit full of reinforced concrete, utilizing the advantage that the prestressed structure has better anti-tensile characteristic (this invention is to be published). These inventions overcome the disadvantages of general slip-resistance pile and anchoring adit full of reinforced concrete and have the functions of engineering prospecting, strengthening, drainage and monitor simultaneous, so they have better strengthened effect and be more convenient for monitor and more economical than traditional methods. Drainage is an important factor in treatments of rock mass and slop. In view of the traditional drainage method that drainage pore often be clogged so as to resulted in incident, professor Yangzhifa invented the method and setting of guide penetration by fiber bundle. It would take good effect to use it in prestressed slip-resistance pile and anchoring adit full of reinforced concrete. In this paper, the author took example for anchoring adit full of reinforced concrete used to strengthen Wuqiangxi left bank to simulate the strengthened effect after consolidated by prestressed slip-resistance pile, took example for 102 landslide occurred along Sichuan-Tibet highway to simulate the application of slip-resistance pile and the new technology of drainage. At the same time the author proposed the treatment method of flowing sand in Sichuan-Tibet highway, which will benefit the study on strengthening similar engineering. There are five novelties in the paper with the author's theoretical study and engineering practice: 1. Summarizing the role of pore water pressure accumulation and dissipation of the Yellow River alluvial and diluvial soil under the action of dynamical consolidation, which has instructive significance in the engineering construction under the analogical engineering geological conditions in the future. It has not been researched by the predecessors. 2. Putting forward the concept of density D in microcosmic based on the microcosmical structure study of the soil sample. Adopting D to weight the reinforcing effect of dynamic consolidation is considered to be appropriate by the means of comparing the D values of Zhengzhou Airport's ground soil before with after dynamically consolidating reinforcement, so a more convenient balancing method can be provided for engineering practice. 3. According to the deep research into the soil mass engineering geology, engineering rock and soil science, soil mechanics, as well as considerable field experiments, improving the consolidating method in airport construction, from the conventional method, which is dynamically compactmg original ground surface firstly, then filling soil and dynamically layer-consolidating or layer-compacting at last to the upgraded method, which is performing dynamical consolidation after filling soil to place totally at the extent of the certain earth-filling depth. The result of the dynamical consolidation not only complies with the specifications, but also reduces the soil treatment investment by 10 million RMB. 4. Proposing the method for calculating the height of the filled soil by the means of estimating the potential displacement produced in the original ground surface and the filled earth soil under the possible load, selecting the appropriate dynamically-compacting power and determining the virtual height of the filled earth soil. The method is proved to be effective and scientific. 5. According to the thought of Engineering Geomechanics Metal-Synthetic Methodology (EGMS), patenting two inventions (to the stage of roclamation, with Professor Yang Zhi-fa, the cooperative tutor, and etc.) in which multi-functions, engineering geological investigation, reinforcement, drainage and strength remedy, are integrated all over in one body at the viewpoint of the breakage mechanism of the rock slope.
Resumo:
Study of 3D visualization technology of engineering geology and its application to engineering is a cross subject which includes geosciences, computer, software and information technology. Being an important part of the secondary theme of National Basic Research Program of China (973 Program) whose name is Study of Multi-Scale Structure and Occurrence Environment of Complicated Geological Engineering Mass(No.2002CB412701), the dissertation involves the studies of key problems of 3D geological modeling, integrated applications of multi-format geological data, effective modeling methods of complex approximately layered geological mass as well as applications of 3D virtual reality information management technology.The main research findings are listed below:Integrated application method of multi-format geological data is proposed,which has solved the integrated application of drill holes, engineering geology plandrawings, sectional drawings and cutting drawings as well as exploratory trenchsketch. Its application can provide as more as possible fundamental data for 3Dgeological modeling.A 3D surface construction method combined Laplace interpolation points withoriginal points is proposed, so the deformation of 3D model and the crossing error ofupper and lower surface of model resulted from lack of data when constructing alaminated stratum can be eliminated.3D modeling method of approximately layered geological mass is proposed,which has solved the problems of general modeling method based on the sections or points and faces when constructing terrain and concordant strata.The 3D geological model of VII dam site of Xiangjiaba hydropower stationhas been constructed. The applications of 3D geological model to the auto-plotting ofsectional drawing and the converting of numerical analysis model are also discussed.3D virtual reality information integrated platform is developed, whose mostimportant character is that it is a software platform having the functions of 3D virtualreality flying and multi-format data management simultaneously. Therefore, theplatform can load different 3D model so as to satisfy the different engineeringdemands.The relics of Aigong Cave of Longyou Stone Caves are recovered. Thereinforcement plans of 1# and 2# cave in phoenix hill also be expressed. The intuitiveexpression provided decision makers and designers a very good environment.The basic framework and specific functions of 3D geological informationsystem are proposed.The main research findings in the dissertation have been successfully applied to some important engineering such as Xiangjiaba hydropower station, a military airport and Longyou Stone Caves etc.