25 resultados para Air quality monitoring stations
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Although Microcystis-based toxins have been intensively studied, previous studies using laboratory cultures of Microcystis strains are difficult to explain the phenomenon that microcystin concentrations and toxin variants in natural blooms differ widely and frequently within a short-term period. The present study was designed to unravel the mechanisms for the frequent variations of intracellular toxins related to the differences in cyanobacterial colonies during bloom seasons in Lake Taihu, China. Monitoring of Microcystis colonies during warm seasons indicated that the variations in microcystins in both concentrations and toxin species were associated with the frequent alteration of Microcystis colonies in Lake Taihu. High concentration of microcystins in the blooms was always associated with two Microcystis colonies, Microcystis flos-aquae and Microcystis aeruginosa, whereas when Microcystis wesenbergii was the dominant colonial type, the toxin production of the blooms was low. Additionally, environmental factors such as temperature and nutrition were also shown to have an effect on the toxin production of the blooms, and may also potentially influence the Microcystis species present. The results of the present study provides insight into a new consideration for quick water quality monitoring, assessment and risk alert in cyanobacterium- and toxin-contaminated freshwaters, which will be beneficial not only for water agencies but also for public health. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Urbanization can exert a profound influence on land covers and landscape characteristics. In this study, we characterize the impact of urbanization on land cover and lacustrine landscape and their consequences in a large urban lake watershed, Donghu Lake watershed (the largest urban lake in China), Central China, by using Landsat TM satellite images of three periods of 1987, 1993 and 1999 and ground-based information. We grouped the land covers into six categories: water body, vegetable land, forested land, shrub-grass land, open area and urban land, and calculated patch-related landscape indices to analyze the effects of urbanization on landscape features. We overlaid the land cover maps of the three periods to track the land cover change processes. The results indicated that urban land continuously expanded from 9.1% of the total watershed area in 1987, to 19.4% in 1993, and to 29.6% in 1999. The vegetable land increased from 7.0% in 1987, 11.9% in 1993, to 13.9% in 1999 to sustain the demands of vegetable for increased urban population. Concurrently, continuous reduction of other land cover types occurred between 1987 and 1999: water body decreased from 30.4% to 23.8%, and forested land from 33.6% to 24.3%. We found that the expansion of urban land has at least in part caused a decrease in relatively wild habitats, such as urban forest and lake water area. These alterations had resulted in significant negative environmental consequences, including decline of lakes, deterioration of water and air quality, and loss of biodiversity.
Characteristics of Traffic-related Emissions: A Case Study in Roadside Ambient Air over Xi'an, China
Resumo:
With development of industry and acceleration of urbanization, problems of air quality as well as their influences on human health have recently been regarded highly by current international communities and governments. Generally, industrializations can result in exhausting of a lot of industry gases and dusts, while urbanization can cause increasing of modern vehicles. Comparing with traditional chemical methods, magnetic method is simple, rapid, exact, low-cost and non-destructive for monitoring air pollution and has been widely applied in domestic and international studies. In this thesis, with an aim of better monitoring air pollution, we selected plants (highroad-side perennial pine trees (Pinus pumila Regel) along a highroad linking Beijing City and the Capital International Airport, and tree bark and tree ring core samples (willow, Salix matsudana) nearby a smelting industry in northeast Beijing) for magnetic studies. With systemic magnetic measurements on these samples, magnetic response mechanism of contamination(e.g. tree leaves, tree ring)to both short- and long-term environmental pollution has been constructed, and accordingly the pollution range, degree and process of different time-scale human activities could be assessed. A series of rock magnetic experiments of tree leaves show that the primary magnetic mineral of leaf samples was identified to be magnetite, in pseudo-single domain (PSD) grain size range of 0.2-5.0 μm. Magnetite concentration and grain size in leaves are ascertained to decrease with increasing of sampling distance to highroad asphalt surface, suggesting that high magnetic response to traffic pollution is localized within a distance of about 2 m away from highroad asphalt surface. On the other hand, highroad-side trees and rainwater can effectively reduce the concentration of traffic pollution-induced particulate matters (PMs) in the atmosphere. This study is the first time to investigate the relationship of smelting factory activities and vicissitudes of environment with tree rings by magnetic methods. Results indicate that magnetic particles are omnipresent in tree bark and trunk wood. Magnetic techniques including low-temperature experiment, successive acquisition of IRM, hysteresis loops and SIRM measurements suggest that magnetic particles are predominated by magnetite in pseudo-single domain state. Comparison of magnetic properties of tree trunk and branch cores collected from different directions and heights implies that collection of magnetic particles depends on both sampling direction and height. Pollution source-facing tree trunk wood contains significantly more magnetic particles than other sides. These indicate that magnetic particles are most likely intercepted and collected by tree bark first, then enter into tree xylem tissues by translocation during growing season, and are finally enclosed in a tree ring by lignifying. Correlation between magnetic properties such as time-dependent SIRM values of tree ring cores and the annual steel yields of the smelting factory is significant. Considering the dependence of magnetic properties in sampling directions, heights, and ring cores, we proposed that magnetic particles in the xylem cannot move between tree rings. Accordingly, the SIRM and some other magnetic parameters of tree ring cores from the source-facing side could be contributed to historical study of atmospheric pollution produced by heavy metal smelting activities, isoline diagrams of SIRM values of all the tree rings indicate that air pollution is increasing worse. We believed that a synthetic rock magnetic study is an effective method for determining concentration and grain size of ferromagnets in the atmospheric PMs, and then it should be a rapid and feasible technique for monitoring atmospheric pollution.
Resumo:
In this paper, a new computational scheme for solving flows in porous media was proposed. The scheme was based on an improved CE/SE method (the space-time Conservation Element and Solution Element method). We described porous flows by adopting DFB (Brinkman-Forchheimer extended Darcy) equation. The comparison between our computational results and Ghia's confirmed the high accuracy, resolution, and efficiency of our CE/SE scheme. The proposed first-order CE/SE scheme is a new reliable way for numerical simulations of flows in porous media. After investigation of effects of Darcy number on porous flow, it shows that Darcy number has dominant influence on porous flow for the Reynolds number and porosity considered.
Resumo:
The purpose of the research is to study the seasonal succession of protozoa community and the effect of water quality on the protozoa community to characterize biochemical processes occurring at a eutrophic Lake Donghu, a large shallow lake in Wuhan City, China. Samples of protozoa communities were obtained monthly at three stations by PFU (polyurethane foam unit) method over a year. Synchronously, water samples also were taken from the stations for the water chemical quality analysis. Six major variables were examined in a principal component analysis (PCA), which indicate the fast changes of water quality in this station I and less within-year variation and a comparatively stable water quality in stations II and III. The community data were analyzed using multivariate techniques, and we show that clusters are rather mixed and poorly separated, suggesting that the community structure is changing gradually, giving a slight merging of clusters form the summer to the autumn and the autumn to the winter. Canonical correspondence analysis (CCA) was used to infer the relationship between water quality variables and phytoplankton community structure, which changed substantially over the survey period. From the analysis of cluster and CCA, coupled by community pollution value (CPV), it is concluded that the key factors driving the change in protozoa community composition in Lake Donghu was water qualities rather than seasons. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
A direct method for measuring the 5-day biochemical oxygen demand (BODS) of aquaculture samples that does not require sample dilution or bacterial and nutrient enrichment was evaluated. The regression coefficient (R-2) between the direct method and the standard method for the analyses of 32 samples from catfish ponds was 0.996. The slope of the regression line did not differ from 1.0 or the Y-intercept from 0.0 at P = 0.05. Thus, there was almost perfect agreement between the two methods. The control limits (three standard deviations of the mean) for a standard solution containing 15 mg/L each of glutamic acid and glucose were 17.4 and 20.4 mg/L. The precision of the two methods, based on eight replicate analyses of four pond water samples did not differ at P = 0.05. (c) 2005 Elsevier B.V All rights reserved.
Resumo:
沈阳是东北地区重要的老工业基地,也是该地区的交通枢纽。本文在对沈阳市进行广泛调查并采集苔藓植物标本的基础上,系统地研究了沈阳市苔藓植物的种类构成、区系、分布格局及其与环境因子的关系,同时利用苔藓植物对沈阳市的大气质量进行了指示。得出的主要结论有: (1)对882份苔藓植物标本进行鉴定,共记录苔藓植物30科67属143种及变种,其中包括苔类(含角苔)9科11属14种,藓类21科56属128种1变种。在记录中发现辽宁省新记录属1个,新纪录种36种,东北新纪录种18种,主要以丛藓科(Pottiaceae)和真藓科(Bryaceae)等地面生藓类为主。 (2)将研究区苔藓植物划分为10个区系成分,其中以北温带分布占据绝对优势,其次为东亚分布和中国特有分布,具强烈的温带性质。通过相似性系数的计算,表明沈阳市苔藓植物区系与鞍山市和抚顺市的亲缘性较大;与上海市和杭州市亲缘性较远。 (3)应用TWINSPAN和DCA,以样点为对象,苔藓植物的重要值为指标,对研究区苔藓植物分布格局进行了分析。结果将样点划分为三个组,从组一到组三,物种丰富度和苔藓盖度逐渐增加。分类与排序的结果与样点的实际物种分布特点基本一致。 (4)采用CCA对沈阳市35种主要地面苔藓植物与环境因子间的关系进行了分析。根据环境因子的影响,将沈阳市主要地面苔藓植物分为两类。同时发现土壤含水量、乔木层郁闭度和人为干扰是影响沈阳市苔藓植物分布的主要因素。 (5)采用大气净度指数法(IAP)和重金属元素(Mn, Fe, Cu, Cr和Pb)化学分析法对沈阳市的大气质量进行了监测。结果表明市区污染远重于郊区,市区西部污染重于东部,南部重于北部;各区以Pb污染最为严重,值得重视。同空气污染指数(API)进行比较,发现IAP与Cu、Pb和API之间具显著负相关性,说明随着重金属含量和API值的升高,IAP值降低,即苔藓植物的种类和盖度下降。以IAP值为自变量,API值为因变量,建立了回归方程y=-0.914x+101.849,进一步说明了IAP值与API值之间的关系。
Resumo:
为了揭示不同类型植被下土壤有机碳及其活性组分季节动态变化及其特点,探讨不同的植被恢复模式对土壤有机碳组分的影响,分析影响土壤有机碳组分变化的因素,评估土壤有机活性有机碳组分参数在植被恢复过程中土壤质量监测的可靠性,为植被恢复及低效林改造技术提供理论依据。本研究选择岷江上游大沟流域的几种人工林(云杉林、油松林、华山松林、日本落叶松林)以及次生落叶阔叶灌丛下土壤,通过剖面机械分层取样,测定土壤总有机碳(TOC)和三种活性碳组分微生物碳(SMBC)、水溶性碳(WSOC)、易氧化碳(EOC)等来反映土壤变化特点。主要结果是: 1. 土壤有机碳含量平均在15.48~25.46 g kg-1之间在5月份时含量最低,随生长季的开始,有机碳含量逐渐增加,到9月份时含量达到最大值;由于新形成的凋落物不能被迅速分解利用补充土壤碳库,而原有碳库经历一个生长季的分解利用,因此,生长季末期即11月份的含量较小;土壤微生物碳含量平均在132.78~476.73mg kg-1之间,9月份和11月份含量都比较高;水溶性碳在生长季中逐步增大,含量在51.95~77.18 mg kg-1之间,到11月份时达到最大值;土壤易氧化碳平均含量在3.74~5.79g kg-1之间,含量最低值出现在5月份,但和其他碳组分不同的是其在7月份时含量较高。 2. 土壤有机碳及其活性碳组分大小关系为:TOC>EOC >SMBC>WSOC;比值约为300:70:5:1。 3. 土壤不同层次间比较,土壤碳指标都表现为随土壤深度增加而逐渐减小, 表层积聚作用明显。 4. 对土壤总有机碳量与活性碳组分以及活性碳之间进行了相关分析表明,土壤总有机碳含量与土壤微生物量碳、水溶性碳、易氧化碳之间的相关性均达到显著水平(P<0.05),有机碳总贮量很大程度上制约着土壤活性碳组分。土壤微生物量碳、水溶性碳、易氧化碳两两之间也都存在着显著相关关系(P<0.05),并随着不同植被类型或立地条件因子发生变化而变化。 5. 土壤有机碳及其活性组分与土壤养分状况之间的相关性分析发现,随着海拔、坡向或者植被类型的改变,其林下土壤有机碳及其活性组分与土壤养分的相关性也发生较大的变化。总体而言,岷江上游地区海拔、坡向、土壤自然含水量、植被盖度、凋落物厚度、土壤全N对次生林下土壤有机碳及其组分有重要影响。而AP、AK、C/N对土壤碳变化变化影响较小。 6. 通过不同海拔、坡向以及植被类型之间的综合比较分析发现,土壤微生物碳SMBC和水溶性碳WSOC比TOC和EOC更能敏感地反映出比较敏感的指示林下土壤质量的变化。 In order to reveal seasonal dynamics of soil labile organic carbon under different secondary vegetation, to analyze effect of different vegetation restoration pattern on soil organic carbon and its fractions, and to find the factors influencing changes in soil organic carbon and its fractions, further to estimate those parameters reliability for soil quality monitoring in the process of vegetation restoration. Soils were selected from several plantations, including Picea asperata Pinus tabulaeformis, Pinus armandii and Larix kaempferi and secondary shrub in Dagou Watershed of the upper reach of Minjiang River. The measurement of TOC, SMBC,WSOC and EOC were made, because these parameters can reflect change of soil characteristics. The major results are: 1. There were the lowest soil organic carbon and its labile fractions contents in May. At the time of growth initiation, they increased gradually and reached maximum in September. After that the soil organic carbon content decreased. Because current litter couldn’t be rapidly decomposed, and supplemented into carbon pool, while intrinsic carbon pool experienced decomposition and utilization of growth season, Which led a decrease in soil organic carbon content in November. Average value was 15.48~25.46 g kg-1; average SMBC content was 132.78~476.73mg kg-1.There were higher SMBC content in September and November as compared with other times; Water soluble organic carbon content increased from 51.95 mg kg-1 in May to 77.18 mg kg-1 in November; EOC content was lowest in May y. Average value was 3.74~5.79g kg-1. Differeing from other parameters of carbon fractions, EOC content was higher in July. 2. The content of soil organic carbon and its labile carbon fractions ranked as follows:TOC>EOC >SMBC>WSO,and ratio was about 300:70:5:1. 3. Consider as soil different layers,all of the parameters decreased gradually with increasing soil depth, thus displayed a significant accumulation in the surface layer soil. 4. Correlations coefficient analysis revealed that, TOC significantly correlated with SMBC, WSOC and EOC indicating total storage of organic carbon limited soil labile carbon fractions in great extent. On the other hand, there were significant correlations between SMBC,WSOC and EOC. But these relationships changed with vegetation types and/or environmental conditions. 5. The relationships between soil organic carbon and its labile fractions and soil nutrient traits changed with altitude,slope aspect and vegetations. Therefore our results suggested that altitude,slope aspect,soil natural water content,vegetation coverage, litter thickness and soil total nitrogen play a important role change in soil organic carbon and its fractions in upper reaches of Minjiang River. While AP、AK、C/N slightly influenced soil carbon. 6. Our results, on the other hand suggested that SMBC and WSOC are more sensitive to the change of altitudes, slope aspects, vegetation types than TOC and EOC, thus two parameters may be good index reflecting change of soil quality. These results provide insights into theoretical and technological evidences for the vegetation regeneration restoration and improvement of low-quality and benefit forest in the upper reaches of Minjiang River regions.