3 resultados para Air Force Flight Test Center (U.S.)
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
基于真空中单电子运动模型,编程计算得到了高斯激光脉冲与初始位于激光传播轴上电子的相互作用结果。不同激光参鼍条件下,得到了电子的能量增益与激光强度、焦斑大小和脉冲宽度关系。结果表明,高斯激光脉冲焦斑较大时,电子没有明显的能量增益,高斯激光脉冲焦斑太小时,电子也没有明显的能量增益。电子的能量增益有一个最佳焦斑大小。在相同激光强度下,电子能量增益的最佳焦斑大小随脉冲宽度的增大而增大,但最佳焦斑大小与脉冲宽度的比值基本上是不变的。
Resumo:
本文用加拿大国立研究院(National Research Council of Canada) Fuhrer等人编制的FORTRAN语言程序(以下简称NRCC程序),对两个冠醚类化合物进行了简正坐标分析,这两个化合物分子是二氧六环(C_4H_8O_2)和12-冠-4(C_8H_(16)O_4)。作者用Synder和Zerbi提出的一般价力场,计算了二氧六环的36个简正振动频率,精化四次后的结果误差为14.04 cm~(-1),得到了二氧六环的精化力场和势能分析矩阵;做了12-冠-4-的中红外光谱(3200-5000cm~(-1))。远红外光谱(500-70cm~(-1))和拉曼光谱(3200-50 cm~(-1),从而归属出12-冠-4的78个简正振动频率实验值;利用二氧六环的精化力场作为初始力场,计算了12-冠-4的简正振动频率,对78个简正振动频率进行了精化计算,精化三次后的结果误差为13.99 cm~(-1),精化后得到12-冠-4的精化力场和势能分布矩阵;将NRCC程序以BASIC语言移至TRS-80微型机上,对二氧六环进行了计算,结果良好,首次给出二氧六环一般价力场的势能分布。一、对二氧六环的处理 二氧六环分子式C_4H_8O_2,合14个原子,有3N-6=36个简正振动频率。分子结构系由二个乙氧基(-CH_2-CH_2-O-)单元组成的含有四个碳,两个氧的六元环,平衡态分子为椅式构象,属于C_(2h)点群,36个简正振动频率分为四个对称类Ag、Au、Bg和Bu,分布是:Ag 10个,Bg 8个,Au 9个,Bu9个。二氧六环的分子结构及坐标示意图见28而图5,定义了14个伸缩内坐标,26个弯曲内坐标,6个扭曲内坐标,共46个,C-C键长1.54A,C-O键长1.41 A,C-H键长1.096A,键角都用109°28'。用CART程序(NRCC程序之一)计算二氧六环14个原子的笛卡尔坐标,用GMAT程序(NRCC程序之二)计算其B矩阵和G矩阵,用FPERT程序(NRCC程序之三)计算其简正振动频率、精化力场,计算用一般价力场,引入V矩阵对称化,将46个坐标化为46个(内)对称坐标,10个多余坐标在FPERT程序计算中除去。二、对12-冠-4的处理 12-冠-4分子式C_8H_(16)O_4,含28个原子,共3N-6=78个简正振动频率,分子结构为四个乙氧基(-CH_2-CH_2-O-)单元组成的含八个碳、四个氧的12元环,自由分子的12-冠-4属于C点群。结构数据引自Groth的X光衍射分数和坐标,自己编制了BASIC语言程度将分数坐标化为笛卡尔坐标,用GMAT程序计算B矩阵和G矩阵,FPERT程序计算78个简正振动频率、精化力场、计算势能分布矩阵,引入U矩阵将92个内坐标化为92个对称坐标,14个多余坐标在FPERT程序中自动除去。三、结果 势能分布矩阵给出分子的振动归属,对这两个冠醚类分子的3N-6个简正振动频率,可以划分为五个振动区域。1.C-H伸缩振动区(3000-2800 cm~(-1)) 在该区中,二氧六环有八个值:2974、2966、2854和2867 cm~(-1)各两个,12-冠-4有16个值:2935、2923、2915和2907 cm~(-1)各两个,2860 cm~(-1)8个,高于2900 cm~(-1)者为反对称伸缩振动,低于2900 cm~(-1)者为对称伸缩振动。2.亚甲基弯曲振动之一(1500-1400 cm~(-1)) 该区的主要振动是亚甲基剪式振动(Scissor),其它振动小于10%二氧六环在该区有四个频率:1443、1461、1451和1457 cm~(-1),12-冠-4有八个频率:1466、1450、1450和1405 cm~(-1)各两个。3.亚甲基弯曲振动区二(1400-1200 cm~(-1))该区的主要振动模式为亚甲基的颤动(wag)、卷曲(twist)和摆动(rock)振动,其它振动小于13%。二氧六环在该区有八个频率:1334、1303、1396、1216、1367、1264、1377和1296 cm~(-1),12-冠-4有十六个频率:1388、1363、……1229 cm~(-1)(其中1288、1307cm~(-1)非简并,其余皆两重简并)。4.环的骨架伸缩振动区(1200-600 cm~(-1))该区振动模式复杂,除环的骨架伸缩振动外,还有亚甲基的wag、twist、rock以及环的骨架弯曲振动,而且这些振动的势能分布值都不小。二氧六环在该区有十一个频率,从1127至610 cm~(-1),12-冠-4有二十个频率,从1135至184 cm~(-1)且大都是二重简并的。5.低频区(600-50cm~(-1))这两个分子在低频区的势能分布略有差别。二氧六环在该区有五个频率:503、486、427、276和224 cm~(-1),主要振动模式为骨架弯曲振动和扭曲振动,C-O、C-C的扭曲振动在三个最低频率中分布占10-30%。12-冠-4在该区有18个频率,除570和547cm~(-1)处,都是二重简并的,六个最低频率的振动模式完全属于C-O、C-C键的扭曲振动,其它振动小于10%,所以200 cm~(-1)以下可称为12-冠-4的扭曲振动区,在600-200cm~(-1)之间的12个频率主要是骨架的弯曲振动,也有一定量的亚甲基wag、twist、rock振动。12-冠-4的简正坐标分析尚未有人做过。二氧六环的计算结果与Snyder和Zerbi的分析相吻合,12-冠-4和二氧六环两分子势能分布的相对一致性证明了对12-冠-4的简正坐标分析基本是正确的。本文比较了二分子的力常数和振动频率,探讨了环的大小对振动光谱的影响。四、NRCC程序简介 NRCC程序由CART、GMAT和FPERT三个程序组成,即可联一起运用,亦可分开独立进行运算。该程序功能强,所占内存大,适于大、中型计算机使用。CART程序之名字取自Cartisian Co-or-dinates的前四个字母,功能系由分子结构参数(键长、键角)计算分子内各原子的笛卡尔坐标。GMAT程序之名字取自G matrix的前四个字母,功能系由分子内各原子的笛卡尔坐标,原子质量和内坐标定义计算分子内各原子的坐标交换矩阵B和Wilson振动动能矩阵G。FPERT程序之名字取自F Perturbation的前五个字母,功能系由分子振动功能矩阵G、势能常数即力常数矩阵F计算分子的简正振动频率和势能分布矩阵,再通过实验频率精化势能矩阵F。NRCC程序可对含30个原子、60个内坐标的分子进行简正坐标分析,扩充后容量增大一倍。该程序可选用一般价力场(General Valence Force Field, 简称GVFF)和UBS场(Urey-Bradley-Shimanouchi Force Field),简称UBSFF或UBFF)。可选用对称化U矩阵,可自行决定力场精化次数和阻尼常数以限制精化结果的收敛性。五、NRCC程序在TRS-80微型机上移植试尝(该部分曾在第三届长春夏季化学讨论会上宣读)针对NRCC程序占内存空间大、难以在微型机上实现的情况,作者将NRCC程序改编为BASIC语言,改变程序的原来结构,形成一组BASIC语言程序:CART/BAS、GMAT/BAS和VIFR/BAS,改编后的BASIC程序在TRS-80微型机调试通过,TRS-80机字长8位,New Dos系统内存32K。改写后的程序只保持了原程序的基本原理,在内存,语句上改动很大,以适于微型机使用。数据在程序中直接嵌入,利于修改替换,且BASIC语言简单易学,便于操作。CART/BAS程序可计算含30个原子以内的分子的笛卡尔坐标,GMAT/BAS程序可计算含20个原子、45个内坐标的分子的G矩阵,VIFR/BAS程序可计算含15个原子的分子的简正振动频率。利用这组程序,作者以二氧六环分子为例做了一些试尝运算,误差14.4 cm~(-1),相对误差1.8%,结果较理想。
Resumo:
高级控制算法对于无人直升机实现高机动性非常重要,但是在实现上也经常受制于鲁棒性和实时性的要求。同时这些控制方法在飞行测试时也会带来高风险。本文介绍了一种自制的安装在机械臂上的直升机作为实验平台去验证控制方法的有效性和可行性,这个平台还能够保证飞行测试的安全性。实验结果显示,能够实现转速跟踪控制以及航向动力学的辨识,并证明平台的有效性。